

INFLUÊNCIA DA ADIÇÃO DE POLPAS CELULÓSICAS DE PINHO E EUCALIPTO NA HIDRATAÇÃO E COMPORTAMENTO MECÂNICO DE PASTAS DE CIMENTO

Iolanda Scheibe de Siqueira

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil.

Orientadores: Romildo Dias Toledo Filho Eduardus Aloysius Bernardus Koenders

Rio de Janeiro Março de 2014

INFLUÊNCIA DA ADIÇÃO DE POLPAS CELULÓSICAS DE PINHO E EUCALIPTO NA HIDRATAÇÃO E COMPORTAMENTO MECÂNICO DE PASTAS DE CIMENTO

Iolanda Scheibe de Siqueira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Examinada por:

Prof. Romildo Dias Toledo Filho, D. Sc.

Prof. Eduardus Aloysius Bernardus Koenders, PhD

Prof. Guilherme Chagas Cordeiro, D. Sc.

Prof. Conrado de Souza Rodrigues, D. Sc.

Prof. Paulo Roberto Lopes Lima, D. Sc.

RIO DE JANEIRO, RJ - BRASIL

MARÇO DE 2014

Siqueira, Iolanda Scheibe de

Influência da Adição de Polpas Celulósicas de Pinho e Eucalipto na Hidratação e Comportamento Mecânico de Pastas de Cimento / Iolanda Scheibe de Siqueira. – Rio de Janeiro: UFRJ/COPPE, 2014.

XIX, 190 p.: il.; 29,7 cm.

Orientadores: Romildo Dias Toledo Filho

Eduardus Aloysius Bernardus Koenders

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2014.

Referências Bibliográficas: p.133-141.

Compósitos Cimentícios. 2. Fibras de Celulose. 3.
 Estudos da Hidratação. 4. Comportamento Reológico 5.
 Caracterização Mecânica. I. Toledo Filho, Romildo Dias *et al.* II. Universidade Federal do Rio de Janeiro, COPPE,
 Programa de Engenharia Civil. III. Título.

AGRADECIMENTOS

Primeiramente, agradeço à Deus.

Aos meus pais por compreenderem a importância deste estudo para minha vida e, também por me perdoarem pelos finais de semana que não fui à Macaé para poder ficar aqui e estudar. Além disso, agradeço por todo o incentivo. Obrigada por tudo. Ao meu irmão Fernando, pela amizade e diversos momentos divertidos que tivemos.

Aos meus orientadores Romildo e Eddie, por confiarem na minha capacidade para o desenvolvimento desta pesquisa e me aceitarem como orientada. Obrigada pelo conhecimento compartilhado, pela paciência ilimitada e atenção, e também pelos momentos de iluminação e –brainstorm".

Ao meu namorado Guilherme pela compreensão, conselhos, apoio, paciência e carinho. Muito obrigada também por estar ao meu lado em todos os momentos virando a noite estudando comigo, me acompanhando aos sábados e feriados para vir a UFRJ, etc.

Agradecimento especial a Dr. Márcia por me ouvir e me ajudar durante os momentos difíceis. Houve um momento em que desistir parecia ser a única saída e ela me mostrou que não.

Agradeço às minhas amigas Meline e Ana Paula, pois sem o apoio e incentivo delas não teria vindo para o Rio fazer o mestrado. Agradeço à elas e as minhas amigas da graduação (Camille, Carol Pichulate, Caroline Pessôa, Larissa e Luiza) por estarem ao meu lado durante todos esses anos e compreenderem minha ausência nesses últimos meses.

Agradeço aos amigos que fiz desde o inicio desta jornada, Edson, Saulo, Carlos Rossigali, Fabrício, Dimas, Andrielli, Tina, Adriana, Otávio, Thiago Grabois, Emilien, Alex Neves, Eduardo Peldoza, Sandra Carvajal, Jonathan e Nathália, que contribuíram (ou não) com esta pesquisa, mas estiveram ao meu lado sempre. Agradeço especialmente à Camila e Samantha que, além de me ajudarem com questões relacionadas à dissertação, me aconselharam e me ajudaram em muitos momentos difíceis desta jornada.

Aos meus amigos vizinhos de baia Rodolfo, Natasha, Carlos Seruti e Marcela, um agradecimento mais do que especial quanto ao apoio irrestrito que vocês me deram durante

estes anos. À Natasha, agradeço pelas noites de estudo, de sushi, os dialetos amazonenses e os bombons de cupuaçu. Ao Seruti, pelos conselhos, apoios técnicos e companhia para estudos. À Marcela pelos papos –eabeça", pelo –devido à diversidade de análises desenvolvidas e da contribuição de ambos para a consolidação destas" (final de frase inesquecível) e por ter me salvado diversas vezes. Ao Rodolfo, obrigada pelos momentos de descontração e risadas.

Agradeço aos técnicos do Laboratório de Estruturas que contribuíram para a realização deste trabalho como Eduardo Braga, sr. Júlio, Rodrigo, Rosângela. Um agradecimento em especial ao Renan, ao Clodoaldo e ao Alessandro, pelo apoio técnico e disposição impecável para a realização dos ensaios, e também pelos momentos de descontração que tornaram essa jornada menos cansativa. Ao pessoal da secretaria, Luzidele, Sandra e Paulinho pela simpatia e eficiência.

Agradeço ao Jô, a Luci e a -Skol" pelos cafezinhos, pastéis e pelos papos descontraídos.

À CNPq pelo suporte financeiro.

Obrigada a todos.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

INFLUÊNCIA DA ADIÇÃO DE POLPAS CELULÓSICAS DE PINHO E EUCALIPTO NA HIDRATAÇÃO E COMPORTAMENTO MECÂNICO DE PASTAS DE CIMENTO

Iolanda Scheibe de Siqueira

Março/2014

Orientadores: Romildo Dias Toledo Filho

Eduardus Aloysius Bernardus Koenders

Programa: Engenharia Civil

O presente trabalho teve como objetivo investigar a influência das fibras de celulose (eucalipto e pinho) na hidratação, no comportamento reológico e mecânico de pastas de cimento. Para tal, foram produzidos compósitos reforçados com fibras de celulose em frações volumétricas de 0,25, 0,50 e 1,0%. A matriz foi composta de cimento CPP-Classe G, sílica ativa, quartzo moído, superplastificante e água. A hidratação foi estudada por meio de ensaios de pulso ultrassônico, calorimetria adiabática, condutividade elétrica e calorimetria isotérmica. A caracterização reológica foi realizada utilizando-se um reômetro com palhetas em cruz (vane test) e mesa de consistência padrão. Ensaios de compressão uniaxial foram realizados em cinco idades (3, 7, 28, 90, 180) avaliando assim a evolução da resistência à compressão e módulo de elasticidade com o tempo. Complementando a caracterização mecânica, foram realizados ensaios de flexão em 4 pontos e compressão triaxial. A partir das análises da hidratação, observou-se que a adição de fibras de celulose dificulta as reações de hidratação, reduzindo o calor total de hidratação, aumentando o período de indução e aumentando a condutividade das misturas. Com base nos resultados dos ensaios mecânicos, foi possível notar que as misturas fibrosas tiveram resistência menor que a da referência, porém aumentaram a tenacidade e, para as misturas de maior teor, a ruptura foi dúctil.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

INFLUENCE OF ADDITION OF CELLULOSE PULPS OF PINE AND EUCALYPTUS IN HYDRATION AND MECHANICAL BEHAVIOUR OF CEMENT PASTES

Iolanda Scheibe de Siqueira

March/2014

Advisors: Romildo Dias Toledo Filho

Eduardus Aloysius Bernardus Koenders

Department: Civil Engineering

The present study aimed to investigate the influence of cellulose fibers (eucalyptus and pine) on hydration, rheological and mechanical behavior of cement pastes. For this goal, were produced composites reinforced with cellulose fibers in different volumetric fractions: 0, 0.25, 0.50 and 1.0%. The matrix was composed of CPP - Class G cement, silica fume, silica sand, superplasticizer and water. Hydration was studied from tests of ultrasonic pulse, adiabatic calorimetry, electrical conductivity and isothermal calorimetry. The rheological characterization was performed using a rheometer with a vane spindle (vane test) and standard consistency table. Uniaxial compression tests were performed at five ages (3, 7, 28, 90 e 180 days), thus evaluating the evolution of parameters such as compressive strength and modulus of elasticity in time. In order to complete the mechanical characterization, bending tests were performed on 4 points and triaxial compression. From the analysis of hydration, it was observed that the addition of cellulose fibers hinders the hydration reactions, reducing the total heat of hydration, increasing the induction period and increasing the conductivity of the mixtures. Based on the results of the mechanical tests, it was possible to note that the fibrous mixtures has lower strength than the reference, but increased toughness and for mixtures of higher content, the failure was ductile.

Índice

1. Introdução	. 1
1.1 Estrutura da Dissertação	. 2
2. REVISÃO BIBLIOGRÁFICA	3
2.1. Matrizes Cimentícias	. 3
2.1.1. Hidratação do Cimento Portland	. 3
2.1.1.1. Hidratação da Alita (C ₃ S)	. 3
2.1.1.2. Hidratação da Belita ($\beta C_2 S$)	. 6
2.1.1.3. Hidratação do Aluminato, Ferroaluminato e Sulfato	. 6
2.1.2. Uso de Pozolanas em Compósitos Reforçados com Fibras Naturais	. 7
2.2. Fibras Naturais Vegetais	. 8
2.2.1. Fibras de Celulose	13
2.2.1.1. Propriedades	14
2.2.1.2. Produção	14
2.3. Compósitos Cimentícios Reforçados com Fibras de Celulose	18
2.3.1. Processos de Hidratação	19
2.3.2. Propriedades Reológicas	20
2.3.3. Propriedades Mecânicas	21
2.3.3.1. Resistência à Compressão	21
2.3.3.2. Resistência à Flexão	22
3. MATERIAIS E MÉTODOS	23
3.1 Métodos para Caracterização dos Materiais	23
3.1.1 Massa Específica	24
3.1.2 Granulometria	24
3.1.3 Composição Química	26
3.1.4 Análises Térmica Diferencial e Termogravimétrica	28
3.1.5 Análise por Microscopia Eletrônica de Varredura	30
3.1.6 Compatibilidade e Ponto de Saturação	33
3.2 Dosagem, Preparo e Cura das Pastas	35
3.3 Caracterização das Pastas no Estado Fresco	41
3.3.1 Água Livre	41
3.3.2 Reologia	42

3.3.2.1 Índice de Consistência	42
3.3.2.2 Tensão de Escoamento – Vane Test	43
3.4 Estudo da Hidratação das Pastas	48
3.4.1 Determinação da Cinética de Hidratação por Pulso Ultrassônico	48
3.4.2 Ensaio de Elevação Adiabática de Temperatura	50
3.4.3 Estudo da Hidratação por Condutividade Elétrica	53
3.4.4 Ensaio de Calorimetria Isotérmica	56
3.4.5 Resistência à Compressão	60
3.5 Caracterização das Pastas no Estado Endurecido	61
3.5.1 Propriedades Físicas	61
3.5.1.1 Estabilidade	61
3.5.2 Propriedades Mecânicas	62
3.5.2.1 Comportamento sob Compressão Uniaxial	62
3.5.2.2 Comportamento sob Esforços de Compressão Triaxiais	64
3.5.2.3 Comportamento sob Esforços de Flexão	67
3.6 Análises Estatísticas dos Ensaios de Caracterização de Pastas	69
4. Apresentações e Análise de Resultados	70
4.1 Propriedades das Pastas no Estado Fresco	70
4.1.1 Água Livre e Estabilidade	70
4.1.2 Reologia	71
4.1.2.1 Índice de Consistência - Espalhamento	71
4.1.2.2 Tensão de Escoamento – Vane test	72
4.2 Estudo da Hidratação das Pastas	76
4.2.1 Determinação da Cinética de Hidratação por Pulso Ultrassônico	76
4.2.2 Estudo da Hidratação por Condutividade Elétrica	78
4.2.3 Ensaio de Elevação Adiabática de Temperatura	81
4.2.4 Ensaio de Calorimetria Isotérmica	86
4.2.5 Resistência à Compressão	89
4.3 Propriedades das Pastas no Estado Endurecido	100
4.3.1 Propriedades Mecânicas	100
4.3.1.1 Comportamento sob Compressão Uniaxial	100
4.3.1.2 Comportamento sob Compressão Triaxial	114
4.3.1.3 Comportamento sob Flexão	124

5.	Considerações Finais		
6.	Referências Bibliográficas		
7.	ANEXO A	142	
7.	1 Propriedades Mecânicas das Pastas	142	
	7.1.1 Comportamento sob Compressão Uniaxial	142	
	7.1.1.1 Modo de Ruptura	153	
	7.1.2 Comportamento sob Compressão Triaxial	159	
	7.1.2.1 Modo de Ruptura	163	
	7.1.3 Comportamento sob Flexão	166	
8.	ANEXO B	169	
8.	1 Análises de Variância	169	
	8.1.1 Índice de Consistência – Espalhamento	169	
	8.1.2 Propriedades Mecânicas	170	
	8.1.2.1 Comportamento sob Compressão Uniaxial	170	
	8.1.2.2 Comportamento sob Compressão Triaxial	186	
	8.1.2.3 Comportamento sob Flexão	187	

LISTA DE FIGURAS

Figura 2.1 – Estrutura da fibra de sisal: (a) seção transversal das fibras mostrando as fibro-células, lúmens e lamela média; (b) zoom da seção transversal e (c) representação esquemática mostrando as diferentes camadas de uma fibro-célula individual (TOLEDO FILHO <i>et al.</i> , 2009)
Figura 2.2 – Representação esquemática da molécula de celulose (SANTOS <i>et al.,</i> 2012)
Figura 2.3 – Açucares presentes nas hemiceluloses (MORAIS et al., 2005) 11
Figura 2.4 – Estrutura parcial da molécula de lignina de uma folhosa, <i>Fagus sylvatica</i> (MOHAN e PITTMAN JR, 2006)
Figura 2.5 – Estruturas de alguns extrativos encontrados em coníferas (MORAIS <i>et al.</i> , 2005)
Figura 2.6 – Feixe de fibras de pinho contendo das duas camadas (tanto de madeira de primavera quanto madeira de verão) (BÉLTRAN, 2011)
Figura 2.7 – Ilustração do processo de produção de papel (RABELO, 2009) 16
Figura 3.1 - Picnômetro a gás AccuPyc 1340 da Micromeritics®
Figura 3.2 – Granulômetro a laser Malvern Mastersizer
Figura 3.3 - Curva granulométrica dos materiais granulares
Figura 3.4 - Equipamento <i>Shimadzu</i> ® <i>Modelo EDX 720 Rayny</i> utilizado para determinação das composições químicas
Figura 3.5 – Análises termogravimétrica e térmica diferencial da fibra de eucalipto 29
Figura 3.6 – Análises termogravimétrica e térmica diferencial da fibra de pinho 30
Figura 3.7 - Fibras kraft de eucalipto vistas por microscopia eletrônica de varredura com aumento de 60 vezes. No detalhe, a imagem de uma fibra
Figura 3.8 – Seção transversal das fibras kraft de eucalipto
Figura 3.9 - Fibras kraft de pinho vistas por microscopia eletrônica de varredura com aumento de 60 vezes. No detalhe, a imagem de uma fibra
Figura 3.10 – Seção transversal das fibras kraft de pinho
Figura 3.11 – Ensaio de compatibilidade e ponto de saturação pelo cone Marsh 34
Figura 3.12 – Ponto de saturação para a mistura de cimento e sílica ativa
Figura 3.13 - Fibras de eucalipto antes da dispersão
Figura 3.14 – Processo de dispersão das fibras de eucalipto: (a) dispersor ultrassônico <i>Sonics & Materials</i> modelo VCX 750; (b) fibras durante o processo de dispersão; (c) fibras dispersas
Figura 3.15 – Fibra de pinho em forma acartonada
Figura 3.16 – Processo de dispersão das fibras kraft em água: (a) misturador de palhetas <i>Chandler;</i> (b) filtração com <i>lycra</i> e (c) sala climatizada a 4°C utilizada para refrigeração

Figura 3.17 – Misturador <i>Chandler</i> utilizado para o preparo das misturas
Figura 3.18 – Câmara de cura dos corpos-de-prova durante as primeiras 24 horas 41
Figura 3.19 - Ensaio de água livre
Figura 3.20 - Ensaio de espalhamento na mesa de consistência padrão 43
Figura 3.21 – Reômetro Brookfield modelo DV-III Ultra do Laboratório de Estruturas e Materiais da COPPE/UFRJ: (a) conjunto de palhetas em formato de cruz (vane spindle); (b) reômetro com um computador acoplado para aquisição dos dados
Figura 3.22 – Representação esquemática do funcionamento do reômetro <i>Brookfield</i> modelo <i>DV-III Ultra</i> (adaptado de BROOKFIELD, 2012)
Figura 3.23 – Curva típica tensão de cisalhamento <i>versus</i> tempo (adaptado de BARNES e NGUYEN, 2001)
Figura 3.24 – Equipamento UCA do LabEst
Figura 3.25 - Curva típica de velocidade do pulso ultrassônico versus tempo de cura 49
Figura 3.26 – Calorímetros adiabáticos do Laboratório de Estruturas e Materiais da COPPE/UFRJ
Figura 3.27 – Representação de um dos calorímetros adiabáticos: (a) perspectiva; (b) corte esquemático. 52
Figura 3.28 – Equipamento ConSensor 2.0 com um sensor conectado
Figura 3.29 – Representação esquemática do ensaio de condutividade: (a) Esquema de ensaio; (b) corte do corpo-de-prova utilizado
Figura 3.30 – Curva típica da condutividade elétrica <i>versus</i> tempo (modificado de ABO EL-ENEIN <i>et al.</i> ,1995)
Figura 3.31 - Calorímetro <i>TAM Air (TA Instruments)</i> do Laboratório de Estruturas e Materiais da COPPE/UFRJ
Figura 3.32 - Representação do calorímetro isotérmico: (a) corte esquemático; (b) detalhe de um canal do calorímetro (adaptado de TAM AIR, 2014)
Figura 3.33 – Evolução do calor de hidratação do cimento CPP- classe G 59
Figura 3.34 - Detalhes do ensaio de estabilidade: (a) Tubos decantadores preenchidos; (b) Moldes no banho térmico; (c) Desmolde dos corpos-de-prova; (d) Marcação para o corte
Figura 3.35 – Configuração do ensaio de compressão uniaxial
Figura 3.36 – Ensaio de compressão triaxial: (a) Equipamento Wykeham Farrance com a célula de confinamento; (b) Célula de confinamento; (c) Corpo-de-prova posicionado na célula de confinamento; (d) Detalhe do posicionamento dos extensômetros
Figura 3.37 – Critério de ruptura de Mohr-Coulomb (ROCHA e AZEVEDO, 2007) 66
Figura 3.38 - Critério de Mohr-Coulomb: (a) no espaço $\tau \times \sigma$; (b) no espaço $\sigma_1 \times \sigma_3$ (ROCHA e AZEVEDO, 2007)
Figura 3.39 - Configuração dos ensaios de resistência à tração na flexão

Figura 4.1 – Aspecto da consistência das misturas após o ensaio da mesa de consistência padrão: (a) referência; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%; (e) PI 0,25%; (f) PI Figura 4.2 - Evolução do limite de escoamento versus fração volumétrica de fibra..... 73 Figura 4.3 - Curvas tensão de cisalhamento versus tempo para as misturas contendo Figura 4.4 - Curvas tensão de cisalhamento versus tempo para as misturas contendo Figura 4.5 - Curvas velocidade do pulso ultrassônico versus tempo de cura em escala logarítmica: (a) misturas contendo fibras de eucalipto e (b) misturas contendo fibras de Figura 4.6 – Condutividade versus tempo: (a) misturas contendo fibras de eucalipto e Figura 4.7 – Relação entre condutividade elétrica e velocidade do pulso ultrassônico. 81 Figura 4.8 – Elevação adiabática da temperatura na escala normal: (a) misturas Figura 4.9 – Curvas de elevação adiabática com o final obtido através de regressão não linear para as misturas contendo fibras de eucalipto: (a) REF, (b) EU 0,50% e (c) EU Figura 4.10 – Curvas de elevação adiabática com o final obtido através de regressão não linear para as misturas contendo fibras de pinho: (a) REF, (b) PI 0,50% e (c) PI 1,0%.86 Figura 4.11 – (a) Curvas de liberação de calor para as misturas REF, EU 0,50%, EU 1,0%, PI 0,50% e PI 1,0%; (b) zoom nas primeiras 40 horas para as misturas contendo fibras de eucalipto; (c) zoom nas primeiras 40 horas para as misturas contendo fibras de Figura 4.12 – Curvas do calor liberado acumulado para as misturas REF, EU 0.50%, EU Figura 4.13 – Evolução da resistência à compressão das pastas: (a) REF; (b) EU 0,25%; Figura 4.14 – Evolução da resistência à compressão da pasta de referência e as misturas Figura 4.15 – Evolução da resistência à compressão das pastas: (a) REF; (b) PI 0,25%; Figura 4.16 – Evolução da resistência à compressão das pastas contendo fibras de pinho. Figura 4.17 – Evolução do grau de hidratação obtido a partir do fc das pastas: (a) REF: Figura 4.18 – Evolução do grau de hidratação obtido a partir do fc no tempo das pastas Figura 4.19 – Evolução do grau de hidratação obtido a partir do fc das pastas: (a) REF;

Figura 4.20 – Evolução do grau de hidratação obtido a partir do fe no tempo das pastas contendo fibras de pinho
Figura 4.21 – Evolução do módulo das pastas com a hidratação: (a) REF; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%
Figura 4.22 – Evolução dos módulos das pastas contendo fibras de eucalipto com a hidratação
Figura 4.23 – Evolução do módulo das pastas com a hidratação: (a) REF; (b) PI 0,25%; (c) PI 0,50%; (d) PI 1,0%
Figura 4.24 – Evolução dos módulos das pastas contendo fibras de pinho com a hidratação
Figura 4.25 – Curvas típicas tensão-deformação dos traços com fibras de eucalipto: (a) aos 3 dias; (b) aos 7 dias; (c) aos 28 dias; (d) aos 90 dias; e (e) aos 180 dias 102
Figura 4.26 – Curvas típicas tensão-deformação dos traços com fibras de pinho: (a) aos 3 dias; (b) aos 7 dias; (c) aos 28 dias; e (d) aos 90 dias
Figura 4.27 – Níveis de avaliação do processo de microfissuração da argamassa submetida à esforços de compressão: (a) Tensão <i>versus</i> deformação axial e (b) Tensão <i>versus</i> deformação volumétrica
Figura 4.28 – Efeito do tipo de fibra e fração volumétrica nos valores percentuais da resistência à primeira fissura da matriz aos 28 dias
Figura 4.29 - Efeito do tipo de fibra e fração volumétrica nos valores percentuais da resistência de coalescência de fissuras da matriz aos 28 dias
Figura 4.30 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 3 dias
Figura 4.31 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 3 dias
Figura 4.32 - Curvas típicas tensão versus deformações axial para pasta contendo fibras de eucalipto submetida a tensões de confinamento de 0, 4,14 e 8,28 MPa: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 4.33 - Curvas típicas tensão versus deformações axial para pasta contendo fibras de fibras de pinho submetida a tensões de confinamento de 0, 4,14 e 8,28 MPa: (a) REF; (b) PI 0,25%; (c) PI 0,50% e (d) PI 1,0%117
Figura 4.34 - Círculos de Mohr e envoltória de ruptura das pastas com diferentes teores de fibras de eucalipto: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0% 119
Figura 4.35 - Círculos de Mohr e envoltória de ruptura das pastas com diferentes teores de fibras de pinho: : (a) REF; (b) PI 0,25%; (c) PI 0,50% e (d) PI 1,0% 120
Figura 4.36 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial com confinamento de 4,14 MPa
Figura 4.37 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial com confinamento de 4,14 MPa
Figura 4.38 – Curvas tensão versus deslocamento para as mistura com diferentes teores de fibras de eucalipto

Figura 4.39 – Curvas tensão versus deslocamento para as mistura com diferentes teores de fibras de pinho
Figura 4.40 – Modo de ruptura dos corpos-de-prova da mistura de referência 126
Figura 4.41 – Modo de ruptura dos corpos-de-prova da mistura EU 0,25% 127
Figura 4.42 – Modo de ruptura dos corpos-de-prova da mistura EU 0,50% 127
Figura 4.43 – Modo de ruptura dos corpos-de-prova da mistura EU 1,0% 127
Figura 4.44 – Modo de ruptura dos corpos-de-prova da mistura PI 0,25% 128
Figura 4.45 – Modo de ruptura dos corpos-de-prova da mistura PI 0,50% 128
Figura 4.46 – Modo de ruptura dos corpos-de-prova da mistura PI 1,0% 128
Figura 7.1 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 3 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.
Figura 7.2 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 3 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%
Figura 7.3 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 7 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 7.4 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 7 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%
Figura 7.5 – Curvas tensão versus deformação uniaxial, deformação lateral e volumétrica de cada corpo-de-prova ensaiado aos 28 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 7.6 – Curvas tensão versus deformação uniaxial, deformação lateral e volumétrica de cada corpo-de-prova ensaiado aos 28 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%
Figura 7.7 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 90 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 7.8 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 90 dias de idade para as pastas: (a) PI 0,50% e (b) PI 1,0% 151
Figura 7.9 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 180 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 7.10 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 7 dias
Figura 7.11 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 7 dias
Figura 7.12 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 28 dias
Figura 7.13 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 28 dias

Figura 7.14 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 90 dias
Figura 7.15 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 90 dias
Figura 7.16 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 180 dias
Figura 7.17 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 180 dias
Figura 7.18 - Curvas tensão versus deformação axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de pinho submetida a tensão de confinamento 4,14 MPa: (a) PI 0,25%; (b) PI 0,50%; e (c) PI 1,0%
Figura 7.19 - Curvas tensão versus deformações axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de eucalipto submetida a tensão de confinamento 8,28 MPa: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%
Figura 7.20 - Curvas tensão versus deformação axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de pinho submetida a tensão de confinamento 8,28 MPa: (a) PI 0,25%; e (b) PI 1,0%
Figura 7.21 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial sem confinamento
Figura 7.22 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial sem confinamento
Figura 7.23 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial com confinamento de 8,28 MPa
Figura 7.24 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial com confinamento de 8,28 MPa
Figura 7.25 – Curvas carga (força) versus deslocamento de cada corpo-de-prova ensaiado aos para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0% 167
Figura 7.26 – Curvas carga (força) versus deslocamento de cada corpo-de-prova ensaiado aos para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%

LISTA DE TABELAS

Tabela 2.1 – Resumo dos processos de separação dos componentes dos materiais lignocelulósicos
Tabela 3.1 – Massa específica dos materiais granulares e das fibras
Tabela 3.2 – Composição química do cimento utilizado
Tabela 3.3 – Composição química da sílica ativa e da sílica 120#
Tabela 3.4 – Composição química das fibras kraft branqueada de eucalipto e das fibras kraft não-branqueadas de pinho
Tabela 3.5 – Composição (kg/m ³) das misturas utilizadas neste trabalho
Tabela 3.6 – Número das palhetas utilizadas no vane test e o torque máximo obtido 46
Tabela 3.7 – Valores de YMC e dimensões das palhetas em cruz (adaptado deBROOKFIELD, 2012).47
Tabela 4.1 – Resultados dos ensaios de estabilidade
Tabela 4.2 – Resultados de espalhamento
Tabela 4.3 – Limite de escoamento para as misturas em estudo
Tabela 4.4 – Ponto A e a inclinação das retas obtidas durante a regressão linear na região intermediária das reações de hidratação
Tabela 4.5 – Tempo do ponto 1 e ponto 2 para as misturas em estudo
Tabela 4.6 - Resultados dos testes de elevação adiabática de temperatura para as misturas. 84
Tabela 4.7 – Valores médios da resistência à compressão e deformação uniaxial correspondente à tensão de pico para as misturas em estudo com idades de 3, 7, 28, 90 e 180 dias
Tabela 4.8 – Valores médios de módulo de elasticidade para as misturas nas idades de 3, 7, 28, 90, 180 dias e coeficiente de Poisson das misturas na idade de 28 dias 106
Tabela 4.9 - Valores médios da resistência de primeira fissura e de coalescência de fissuras e suas respectivas a deformações para as misturas aos 28 dias 111
Tabela 4.10 - Propriedades mecânicas sob cargas de compressão triaxial das misturas em estudo. 121
Tabela 4.11 - Resultados médios de carga de primeira fissura e pós-fissuração e suasrespectivas tensões e deslocamentos das pastas reforçadas com fibras de eucalipto epinho.125
Tabela 4.12 - Valores médios do índice de tenacidade de acordo com a norma japonesa.
Tabela 8.1 - Análise de variância do parâmetro de espalhamento para as pastas contendoeucalipto.169
Tabela 8.2 - Análise de variância do parâmetro de espalhamento para as pastas contendo pinho. 170

Tabela 8.3 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de eucalipto aos 3 dias de idade.171
Tabela 8.4 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de pinho aos 3 dias de idade
Tabela 8.5 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de eucalipto aos 7 dias de idade.172
Tabela 8.6 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de pinho aos 7 dias de idade
Tabela 8.7 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de eucalipto aos 28 dias de idade.173
Tabela 8.8 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de pinho aos 28 dias de idade
Tabela 8.9 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de eucalipto aos 90 dias de idade.174
Tabela 8.10 - Análise de variância do parâmetro resistência à compressão uniaxial paraas pastas contendo fibras de pinho aos 90 dias de idade.174
Tabela 8.11 - Análise de variância do parâmetro resistência à compressão uniaxial paraas pastas contendo fibras de eucalipto aos 180 dias de idade
Tabela 8.12 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de eucalipto aos 3 dias de idade.175
Tabela 8.13 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de pinho aos 3 dias de idade.176
Tabela 8.14 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de eucalipto aos 7 dias de idade.176
Tabela 8.15 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de pinho aos 7 dias de idade.177
Tabela 8.16 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de eucalipto aos 28 dias de idade.177
Tabela 8.17 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de pinho aos 28 dias de idade.178
Tabela 8.18 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de eucalipto aos 90 dias de idade.178
Tabela 8.19 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de pinho aos 90 dias de idade.179
Tabela 8.20 - Análise de variância do parâmetro deformação de pico para as pastascontendo fibras de eucalipto aos 180 dias de idade
Tabela 8.21 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de eucalipto aos 3 dias de idade.180
Tabela 8.22 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de pinho aos 3 dias de idade.180
Tabela 8.23 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de eucalipto aos 7 dias de idade.181

Tabela 8.24 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de pinho aos 7 dias de idade.181
Tabela 8.25 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de eucalipto aos 28 dias de idade.182
Tabela 8.26 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de pinho aos 28 dias de idade.182
Tabela 8.27 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de eucalipto aos 90 dias de idade.183
Tabela 8.28 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de pinho aos 90 dias de idade.183
Tabela 8.29 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de eucalipto aos 180 dias de idade
Tabela 8.30 - Análise de variância do parâmetro módulo de elasticidade para as pastascontendo fibras de pinho aos 180 dias de idade.184
Tabela 8.31 - Análise de variância do parâmetro coeficiente de Poisson para as pastascontendo fibras de eucalipto.185
Tabela 8.32 - Análise de variância do parâmetro coeficiente de Poisson para as pastascontendo fibras de pinho
Tabela 8.33 - Análise de variância do parâmetro resistências à compressão triaxial paraas pastas contendo fibras de eucalipto.186
Tabela 8.34 - Análise de variância do parâmetro resistências à compressão triaxial paraas pastas contendo fibras de pinho.187
Tabela 8.35 - Análise de variância do parâmetro tensão de primeira fissura para aspastas contendo fibras de eucalipto.188
Tabela 8.36 - Análise de variância do parâmetro tensão de primeira fissura para aspastas contendo fibras de pinho
Tabela 8.37 - Análise de variância do parâmetro deslocamento de primeira fissura paraas pastas contendo fibras de eucalipto.189
Tabela 8.38 - Análise de variância do parâmetro deslocamento de primeira fissura paraas pastas contendo fibras de pinho.189
Tabela 8.39 - Análise de variância do parâmetro índice de tenacidade para as pastas estudadas

1.INTRODUÇÃO

O Brasil é um dos principais produtores de fibras vegetais do mundo. Portanto, buscar novas aplicações para esses materiais que resultem em benefícios sociais e econômicos é de grande importância. Além dos usos tradicionais já dados a essas fibras (ex: fios, cordões, tecidos, papel, papelão) é importante que se busque outras aplicações de larga escala. A indústria da construção civil, pela sua dimensão e descentralização, pode ser um setor econômico que se beneficie do uso dessas fibras. Ademais, como os materiais cimentícios (pastas, argamassas e concretos) são os mais utilizados nessa indústria e apresentam comportamento frágil e baixa resistência à tração, as fibras vegetais podem melhorar o comportamento dos mesmos quando submetidos à tração ou flexão, conferindo-lhes tenacidade e resistência pósfissuração.

Atualmente, os reforços mais utilizados são as fibras de aço, vidro, polipropileno, PVA (poliálcool vinílico), kevlar e asbestos. Esta última fibra, que comumente era utilizada na fabricação fibrocimentos, tem sido cada vez menos utilizada, uma vez que, por volta dos anos 60, descobriu-se que ela é extremamente prejudicial à saúde humana. A utilização de fibras de origem vegetal tem diversas vantagens, como a sua abundância, o baixo custo e consumo de energia para fabricá-las, e, além disso, é um recurso renovável.

Dentre as fibras vegetais destacam-se as fibras de sisal, juta, curauá, coco que podem ser utilizadas como mono-filamentos, cordões ou tecidos no reforço das matrizes de cimento. As polpas celulósicas também têm sido estudadas visando a substituição das fibras de asbestos na produção de fibrocimento amianto utilizando o processo Hastchek, onde uma lama é produzida e, em seguida, é retirada a água em excesso por meio de aplicação de vácuo e pressão.

As polpas celulósicas também podem ser utilizadas como reforço de pastas de cimento em processos convencionais de pré-mistura (premix). O desenvolvimento de compósitos contendo fibras de celulose através deste método é importante para viabilizar a utilização destes em outras aplicações, que não sejam as contempladas pelos compósitos produzidos pelo método Hastchek. Um exemplo de aplicação seria na indústria do petróleo em que essas pastas poderiam ser uma alternativa às pastas reforçadas com fibras sintéticas de polipropileno. O presente estudo tem como principais objetivos, avaliar a influência de fibras de celulose na hidratação e no comportamento mecânico de pastas de cimento. Com este intuito, foram produzidos compósitos contendo fibras de eucalipto e pinho nas frações volumétricas de 0,25, 0,50 e 1,0%. A matriz utilizada foi uma pasta de referência com um fator água/materiais cimentícios (a/mc) de 0,55, com 35 % de sílica ativa e 65% de cimento (materiais cimentícios), com relação 1:1 de materiais cimentícios e sílica moída, e 0,3 % de superplastificante. Estas pastas foram então submetidas a testes de caracterização reológica, análise do processo de hidratação utilizando-se ensaios de calorimetria adiabática, calorimetria isotérmica, condutividade elétrica e velocidade ultrassônica, e a caracterização física (estabilidade e água livre) e mecânica (compressão uniaxial e triaxial, e tração na flexão).

1.1 Estrutura da Dissertação

Esta dissertação encontra-se estruturada em oito capítulos, descritos a seguir.

O Capítulo 1 faz uma breve introdução ao tema abordado, apresentando pequena discussão sobre a relevância do tema e os objetivos da pesquisa;

O Capítulo 2 traz a revisão bibliográfica com base na literatura especializada, apresentando discussões sobre a hidratação do cimento portland, a utilização de pozolanas em compósitos com fibras naturais, as características das fibras de celulose e sua produção, e características dos compósitos reforçados com fibras de celulose;

No Capítulo 3 está o programa experimental, onde consta a dosagem das pastas, bem como os procedimentos de mistura e cura das mesmas. São apresentadas também as metodologias e as equações utilizadas durante a realização dos ensaios e análise dos dados obtidos na caracterização das pastas com diferentes teores de fibras;

O Capítulo 4 apresenta os resultados e as discussões dos ensaios realizados no presente trabalho, com as pastas desenvolvidas;

O Capítulo 5 apresenta as conclusões obtidas a partir dos resultados dos diferentes ensaios realizados;

No Capítulo 6 encontra-se a bibliografia utilizada na pesquisa;

Nos Capítulo 7 e 8 encontram-se os anexos.

2. REVISÃO BIBLIOGRÁFICA

2.1. Matrizes Cimentícias

Neste tópico será apresentada a estrutura da matriz cimentícia, como ela se forma a partir das reações de hidratação e como os produtos de hidratação podem afetar as propriedades do compósito.

A estrutura das matrizes cimentícias e suas propriedades se desenvolvem, principalmente, como resultado das reações de hidratação do cimento. Assim, é importante entender os mecanismos de hidratação e seus produtos. Por isso, a composição e as características dos compostos do cimento serão descritos no próximo item. Mostram-se também as reações da hidratação de cada um destes compostos e seus produtos, bem como a cinética da hidratação.

2.1.1. Hidratação do Cimento Portland

O cimento Portland é constituído de diversos compostos. Os principais são o silicato tricálcico ou alita (C_3S), silicato dicálcico ou belita (C_2S), aluminato tricálcico (C_3A), ferroaluminato tetracálcico ou ferrita (C_4AF) e gesso ou gipsita ($CaSO_4 \cdot 2 H_2O$) em quantidades variáveis, de acordo com o tipo de cimento. Quando estes componentes entram em contato com a água, reações químicas individuais de hidratação ocorrem tanto em paralelo quanto sucessivamente (ou em uma combinação ainda mais complexa) liberando calor. Por isso, o processo de hidratação é considerado um processo exotérmico de alta complexidade e é necessária a discussão das reações de hidratação de cada um dos componentes do cimento em separado para que se entenda o processo como um todo.

2.1.1.1. Hidratação da Alita (C_3S)

O silicato tricálcico ou alita (C₃S) é o principal e mais importante constituinte do cimento Portland e corresponde de 50 a 70% do mesmo. Além disso, a hidratação da alita é a reação que predomina durante as primeiras horas de hidratação que é o período o qual compreende a pega e o desenvolvimento da resistência inicial da mistura (BULLARD *et al.*, 2011). A reação de hidratação da alita (C₃S) tem como produtos o silicato de cálcio hidratado (C-S-H) e o hidróxido de cálcio (CH) conforme a Equação 2.1.

$$C_3S + H \rightarrow C - S - H + CH$$
 Equação 2.1

O processo de hidratação da alita pode ser dividido em quatro períodos. São eles: (i) período de pré-indução ou reação inicial; (ii) período de indução (dormência); (iii) período de aceleração (pós-indução); e (iv) período de desaceleração (ODLER, 1998). A seguir estas etapas serão brevemente descritas.

• <u>Período de Pré-indução</u>

Assim que o C_3S entra em contato com a água, a hidratação começa de forma intensa e imediata, caracterizando-se por uma alta velocidade de liberação de calor. A maior parte desta liberação é devida a dissolução do C_3S (BULLARD *et al.*, 2011). Esta etapa só dura por poucos minutos e o final é caracterizado pela rápida desaceleração da dissolução da alita.

• Período de Indução (Dormência)

Durante o período de indução ou dormência, a velocidade de reação de hidratação se reduz significativamente e se mantém assim durante algumas horas. O mecanismo que leva à redução na taxa de hidratação ainda é motivo de debate e algumas hipóteses foram propostas (TAYLOR, 1990; ODLER, 1998; BULLARD *et al.*, 2011).

Hipótese da barreira metaestável: esta hipótese supõe que a diminuição da velocidade da reação ocorre devido à rápida formação de uma fina camada metaestável contínua de silicato de cálcio hidratado em volta dos grãos anidros de C₃S (JENNINGS e PRATT, 1979). Os autores observaram produtos hidratados através de microscopia eletrônica de transmissão. Esta camada funciona como uma barreira que dificulta a migração da água para a superfície dos grãos não hidratados. Os fatores que fariam com que o período de indução acabasse seriam, então, relacionados a esta barreira. O final estaria ligado com o rompimento da barreira devido à pressão osmótica gerada pela solução presente entre a barreira e o grão de C₃S não hidratado ou, então, devido à imbebição de água (ODLER, 1998).

Hipótese da nucleação do CH: é assumido que, no estágio inicial da reação de hidratação, o sólido do hidróxido de cálcio se dissolve na solução e não consegue precipitar devido ao depósito de íons silicato na superfície dos núcleos de CH

(ODLER, 1998). O período de indução acabaria no momento em que a concentração de CH se encontrasse alta o suficiente para superar tal efeito.

Hipótese da nucleação do C-S-H: a velocidade da reação no período de indução e aceleração é controlada pela nucleação e crescimento do C-S-H formado. O período de indução terminaria, então, quando o crescimento do C-S-H começasse (TAYLOR, 1990).

• <u>Período de Aceleração</u>

Depois de algumas horas a taxa da reação de hidratação eleva-se novamente e de maneira repentina atingindo um máximo dentro de 5-10 horas. Este intervalo é conhecido como o período de aceleração ou pós-indução e está relacionado à nucleação e crescimento do C-S-H (BULLARD *et al.*, 2011). Além disso, também há a precipitação do hidróxido de cálcio (CH).

O Silicato de Cálcio Hidratado (C-S-H): é a fase mais importante de uma pasta hidratada, aonde chega a compor de 50 a 60% do volume de sólidos, determinando assim as propriedades da pasta (MEHTA e MONTEIRO, 2008). Não há uma composição bem definida do C-S-H; a relação C/S varia entre 1,5 a 2,0 e a quantidade de água estrutural pode variar ainda mais (ODLER, 1998). O C-S-H é amorfo ou pobremente cristalino. Ele forma um sólido poroso no qual os poros variam em tamanho de macroscópicos para espaços entre camadas de nanômetros e exibe características de um gel rígido (TAYLOR, 1990).

Hidróxido de Cálcio (CH), também conhecido como portlandita, (Ca(OH)₂), ao contrário do C-S-H, tem estequiometria bem definida. Além disso, quando há disponibilidade de espaço, o CH é constituído de camadas fracamente unidas que formam grandes cristais com morfologia prismática hexagonal (MEHTA e MONTEIRO, 2008). O hidróxido de cálcio também é o principal responsável pelo efeito de mineralização das fibras vegetais, o que diminui a durabilidade dos compósitos reforçados com fibras naturais (TOLEDO FILHO *et al.*, 2000, 2003; SILVA *et al.*, 2010; MELO FILHO *et al.*, 2013). No item 2.1.2, será discutido o uso de pozolanas para mitigar os danos, causados pelo CH às fibras vegetais.

• <u>Período de Desaceleração</u>

Ao final do período de aceleração, os menores grãos de C₃S provavelmente já reagiram por completo por dissolução e precipitação, e, durante o período de

desaceleração, os grãos maiores são gradualmente substituídos por C-S-H através de um processo controlado pela difusão (TAYLOR, 1990). Este processo de difusão é caracterizado pela desaceleração gradual da reação.

2.1.1.2. Hidratação da Belita ($\beta C_2 S$)

O silicato dicálcico ou belita ($\beta C_2 S$) corresponde de 15 a 30% do cimento Portland (TAYLOR, 1990) e, quando hidratado, também produz silicato de cálcio hidratado (C-S-H) e hidróxido de cálcio (CH), conforme mostrado na Equação 2.2.

$$C_2S + H \rightarrow C - S - H + CH$$
 Equação 2.2

Os mecanismos de hidratação da belita ($\beta C_2 S$) são similares aos da alita ($C_3 S$), porém a velocidade da hidratação da belita é muito mais lenta. Por isso, a reação de hidratação da belita contribui pouco para o ganho de resistência até os 28 dias (TAYLOR, 1990). Outra diferença entre estes dois silicatos é a quantidade de CH produzido. A hidratação da alita produz mais hidróxido de cálcio que a da belita (MEHTA e MONTEIRO, 2008).

2.1.1.3. Hidratação do Aluminato, Ferroaluminato e Sulfato

O aluminato tricálcico (C₃A) corresponde a 5-10% do cimento Portland e, quando em contato com a água, reage imediatamente. A reação de hidratação do C₃A formam produtos hidratos cristalinos, como C₃AH₆, C₄AH₁₃ e C₂AH₈, que são produzidos rapidamente, com uma grande liberação de calor (BULLARD *et al.*, 2011). Estas reações sem a presença de sulfato de cálcio podem gerar uma pega indesejável, cedo demais, o que inviabilizaria a utilização do cimento. Para retardar essas reações, adiciona-se, geralmente, gesso ou gipsita (CaSO₄.2H₂O).

Na presença de sulfato de cálcio a reação do C_3A é radicalmente alterada, por isso se faz necessária a discussão das reações do aluminato junto com as reações da gipsita. Além disso, as reações de hidratação do ferroaluminato (C_4AF) também serão discutidas aqui, uma vez que, quando este reage com a água na presença de sulfato, gera produtos de composição química diferente, porém, com estruturas cristalinas semelhantes à etringita e ao monossulfato (MEHTA e MONTEIRO, 2008).

A hidratação do C₃A na presença de sulfato é caracterizada por dois momentos de alta liberação de calor. No primeiro momento (até 30 minutos), o principal hidrato

formado é a etringita ($C_6A\bar{S}_3H_{32}$ ou AF_t). Este período de rápida reação é seguido por um período de baixa liberação de calor e a duração deste período varia com a quantidade de sulfato presente (TAYLOR, 1990). Por volta de 24-48 horas, a velocidade da reação aumenta rapidamente novamente devido a nova hidratação do aluminato e ferroaluminato e a etringita se torna instável e é gradualmente convertida em monosulfoaluminato de cálcio ($C_4A\bar{S}_3H_{18}$ ou AF_m). A etringita se cristaliza com o formato de agulhas prismáticas curtas. Já o monossulfato se apresenta em formato de finas placas hexagonais.

O mecanismo que causa a desaceleração das reações do C₃A na presença de sulfatos ainda não é bem conhecido, porém algumas explicações já foram propostas. Uma delas, por exemplo, é a de que a etringita produzida durante os primeiros minutos forma uma camada de difusão em volta das superfícies de C₃A, retardando a reação (BULLARD *et al.*, 2011).

Quanto a hidratação da ferrita (C₄AF), os produtos gerados, como dito anteriormente, são essencialmente similares àqueles formados na hidratação do C₃A. Entretanto, o processo de hidratação da ferrita é mais lento que o do C₃A.

2.1.2. Uso de Pozolanas em Compósitos Reforçados com Fibras Naturais

A matriz cimentícia, com as reações de hidratação em processo, caracteriza-se como um meio alcalino. Isto pode se tornar um problema quando se utiliza fibras naturais vegetais como reforço. Em uma matriz cimentícia, produtos hidratados (principalmente o hidróxido de cálcio) migram para os lúmens (cavidade interna característica das fibras naturais) e superfícies das fibras causando mineralização das mesmas. A mineralização das fibras diminui a durabilidade dos compósitos assim como o ataque alcalino e a variação de volume da fibra devido a sua alta absorção de água (TOLEDO FILHO *et al.*, 2000, 2003; MOHR *et al.*, 2005; SILVA *et al.*, 2010; ARDANUY *et al.*, 2011).

Para evitar a redução na resistência e tenacidade dos compósitos com fibras vegetais, muitas medidas preventivas já foram propostas como, por exemplo: impregnar as fibras com agentes bloqueadores ou repelentes de água (BLANKENHORN *et al.*, 2001; TONOLI *et al.*, 2009; FIDELIS *et al.*, 2014); carbonatação acelerada para redução da alcalinidade da matriz (BENTUR e AKERS, 1989; TOLEDO FILHO *et al.*, 2003; ALMEIDA *et al.*, 2010; TONOLI *et al.*, 2010); e o

uso de pozolanas para a redução da quantidade de hidróxido de cálcio presente na matriz (TOLEDO FILHO *et al.*, 2003; LIMA, 2004; MOHR *et al.*, 2007; MELO FILHO *et al.*, 2013). Sendo esta última, uma técnica muito promissora. Muitas pozolanas podem ser utilizadas para este fim, por exemplo: cinza volante, metacaulinita e sílica ativa. A pozolana utilizada neste trabalho foi a sílica ativa.

A sílica ativa é um subproduto da produção de ligas de silício ou ferrosilício que é caracterizado pelo tamanho pequeno de suas partículas (duas ordens de magnitude mais fina que o cimento) e pela alta atividade pozolânica (TAYLOR, 1990). Ela reage com o CH presente na matriz gerando C-S-H. Como esta reação consome o CH, reduz-se a alcalinidade do meio e evita-se a mineralização.

Quando se usa sílica ativa em grandes quantidades de substituição do cimento Portland (por volta de 30% ou mais de substituição) pode minimizar significativamente a degradação das propriedades dos compósitos (TOLEDO FILHO *et al.*, 2003; MOHR *et al.*, 2007). Assim, neste trabalho, foram utilizados 35% de sílica ativa em substituição ao cimento.

2.2. Fibras Naturais Vegetais

As fibras naturais podem ser classificadas em cinco grupos, de acordo com a origem das fibras: fibras oriundas das hastes (linho, cânhamo, etc.); das sementes (algodão, coco, etc.); das folhas (sisal, banana, etc.); da superfície (palhas de cereais, bamboo, etc.); e do lenho (eucalipto, pinho, etc.) (FÖRDÖS, 1988). Apesar da diversidade de espécies que podem compor estes grupos, as fibras pertencentes a estes grupos têm similaridades entre si, tanto quimica quanto estruturalmente.

As diversas espécies de plantas possuem uma microestrutura similar. Elas são constituídas de células fibrosas tubulares, como mostrado na Figura 2.1. Estas fibrocélulas aparecem conectadas umas as outras pela lamela média (TOLEDO, 1997). A estrutura das fibro-células, por sua vez, é formada por uma parede primária, uma parede secundária e o lúmen (Figura 2.1c). A parede primária é constituída de microfibrilas dispostas de maneira randômica e reticulada. Já a parede secundária é formada por três camadas (S_1 , S_2 e S_3) e, em cada uma delas, as microfibrilas aparecem em padrões ordenados distintos (COUTTS, 1988). O ângulo entre as microfibrilas e o eixo da fibro-célula varia de espécie para espécie, e também entre as camadas. Ao final, o lúmen é a parte mais interna das fibro-células e é definido como uma cavidade oca.

Figura 2.1 – Estrutura da fibra de sisal: (a) seção transversal das fibras mostrando as fibrocélulas, lúmens e lamela média; (b) zoom da seção transversal e (c) representação esquemática mostrando as diferentes camadas de uma fibro-célula individual (TOLEDO FILHO *et al.*, 2009).

Como as cascas, folhas e caules que as originam são produtos de um processo biológico de crescimento, a composição das fibras naturais são variáveis quantitativamente. As fibras se diferem de espécie para espécie, de árvore para árvore e até de célula para célula de uma mesma árvore. Entretanto, os principais componentes presentes são os mesmos e são os polissacarídeos (celulose e hemicelulose), a lignina, e também um grupo diverso de outras substâncias que são externas à parede celular e que também estão presentes, os extrativos por exemplo. Pelos componentes das fibras definirem, geralmente, as propriedades e características das mesmas, abaixo os principais componentes serão brevemente descritos.

• <u>Celulose</u>

O principal polissacarídeo presente na parede celular é a celulose. A celulose é composta de longas cadeias lineares (alto grau de polimerização) de β 1,4 glucano insolúvel em água, solventes orgânicos comuns e solução aquosa alcalina. O polímero

de celulose pode ser muito longo (até 15.000 unidades de glicose) e, assim, tem uma alta massa molecular (CASTRO, 2009). A Figura 2.2 mostra uma representação esquemática da celulose.

Figura 2.2 - Representação esquemática da molécula de celulose (SANTOS et al., 2012).

As moléculas de celulose tem arranjo fibroso e geralmente variável sendo em certas áreas ordenada, rígida e inflexível (cristalina) e em outras flexível (amorfa). Essas áreas amorfas são responsáveis pela absorção de água e inchamento de moléculas de celulose, já que nas regiões cristalinas a forte rede de ligações de hidrogênio e outras ligações secundárias, impedindo a absorção (CASTRO, 2009; BRITT,1970).

Conforme a Figura 2.2 mostra, a celulose tem monômeros de glicose ligados uns aos outros uniformemente por toda a cadeia. Por causa da presença de ligações β – glicosídicas, que induz que a cadeia mantenha mais ou menos uma forma estendida, as moléculas de celulose podem ficar alinhadas por longos segmentos, levando a poderosas forças associativas que configuram uma grande resistência (BRITT, 1970). Quando as moléculas se alinham em grandes segmentos, regiões de cristalinidade são evidentes.

• <u>Hemicelulose</u>

A hemicelulose é um grupo de carboidratos poliméricos amorfos que sempre acompanham a celulose, formado por vários tipos de açucares. Na Figura 2.3 é ilustrada a maioria dos açucares que compõem as unidades de hemicelulose. São solúveis em álcali, grande parte deles. A molécula de hemicelulose não possui arranjo fibroso e tem grau de polimerização baixo (MORAIS *et al.*, 2005). Outra propriedade da hemicelulose é a capacidade de absorver água, que acaba contribuindo para o inchaço da fibra (CASTRO, 2009).

Figura 2.3 – Açucares presentes nas hemiceluloses (MORAIS et al., 2005).

A combinação e a proporção entre os diferentes componentes encontrados nas hemiceluloses de madeira variam com a espécie e, provavelmente, também de árvore para árvore. Além disso, durante a etapa de cozimento para a produção da polpa, as diferentes hemiceluloses são dramaticamente modificadas, tanto a quantidade quanto posição e estrutura das suas unidades (BRITT, 1970).

• <u>Lignina</u>

É um polímero de estrutura complexa constituído de unidades aromáticas (anéis de benzeno) (FÖRDÖS, 1988). A Figura 2.4 mostra a estrutura parcial de uma molécula de lignina de folhosa (*hardwood*).

A lignina também tem estrutura amorfa assim como a hemicelulose, porém é considerada como um dos materiais mais resistentes da natureza. Ela, na biomassa vegetal, tem papel de ligante entre as microfibrilas e, também, de cobertura e proteção, uma vez que impede a degradação da celulose e da hemicelulose (CASTRO, 2009).

Figura 2.4 – Estrutura parcial da molécula de lignina de uma folhosa, *Fagus sylvatica* (MOHAN e PITTMAN JR, 2006).

• Substâncias Externas à Parede Celular

São substâncias envolvidas no crescimento das células ou que resultam do processo metabólico da planta, mas não fazem parte da parede celular. A maioria são compostos simples, tem baixo peso molecular e são chamados de extrativos. Estes são solúveis em água e outros solventes orgânicos neutros e estão presentes principalmente nas cascas (MORAIS *et al.*, 2005). A Figura 2.5 mostra estruturas de alguns extrativos encontrados em coníferas (*softwood*).

Os extrativos frequentemente afetam a produção das polpas de uma forma negativa. São responsáveis pelo consumo de substâncias químicas necessárias para a polpação, causa de descoloração nas fibras não branqueadas e promove corrosão nos digestores (WASTOWSKI, 2009).

2.2.1. Fibras de Celulose

As fibras de celulose são classificadas, basicamente, em dois grupos: coníferas (*softwoods*) e folhosas (*hardwood*). O primeiro grupo geralmente é utilizado para produzir fibras de 2 a 5 mm de comprimento e o segundo grupo, para produzir fibras de 0,5 a 1,5 mm na indústria do papel e celulose. Além de diferenças quanto a comprimento, estes dois grupos também tem diferenças importantes quanto à composição química.

As folhosas geralmente apresentam mais carboidratos e menos lignina que as coníferas. Além disso, a composição da hemicelulose é diferente para ambas. Enquanto as mananas representam a maior parcela da hemicelulose nas coníferas, para as folhosas este componente é a xilana. Apesar das diferenças nas porcentagens dos componentes, a quantidade de extrativos e cinzas das espécies é praticamente o mesmo (BRITT, 1970).

Outras diferenças podem ser encontradas também até entre as fibras extraídas de uma mesma árvore. As árvores crescem em diâmetro através da geração de novas camadas de madeira em seu interior e as características morfológicas destas camadas dependem da estação e condições climáticas do local onde estão. Para as coníferas, durante a primavera é que o crescimento é máximo e, por consequência, as fibro-células desta camada (madeira da primavera ou *earlywood*) são maiores e mais finas que as fibro-células formadas durante períodos de crescimento lento (madeira de verão ou *latewood*) (COUTTS, 1988). A Figura 2.6 mostra um feixe de fibras de conífera que contém fibro-células de ambas as camadas.

Figura 2.6 – Feixe de fibras de pinho contendo das duas camadas (tanto de madeira de primavera quanto madeira de verão) (BÉLTRAN, 2011).

2.2.1.1. Propriedades

A maioria dos estudos iniciais sobre as propriedades das fibras de celulose foram feitos pela indústria do papel e celulose, assim os resultados foram obtidos interpretando dados de testes realizados em folhas de papel ou outros produtos. Existem poucos dados sobre as fibras individuais. Segundo COUTTS (1988), o módulo de elasticidade das fibras individuais separadas por processos químicos pode variar entre 10-100 GPa e a resistência a tração entre 500-1000 MPa, dependendo do ângulo das fibra, condições de umidade da fibra e imperfeições.

2.2.1.2. Produção

Como já foi detalhado no início do item 2.2.1, as fibras de celulose são obtidas através principalmente da madeira de árvores como as folhosas e coníferas. Estas madeiras são compostas de diversos componentes além da celulose. É necessário que a madeira passe por um processo de polpação e purificação para a obtenção das fibras.

Existem diversos processos para a separação dos componentes da madeira. Eles podem ser classificados em: processos mecânicos, químicos, semiquímicos e quimimecânicos, físicos e biotecnológicos (CASTRO, 2009). A Tabela 2.1 apresenta os tipos, suas descrições e algumas observações sobre os principais processos de polpação. Tabela 2.1 – Resumo dos processos de separação dos componentes dos materiais

lignocelulósicos.

Tipo de processo de polpação	Breve descrição	Observações
Mecânicos	 Polpação mecânica: Uso de energia mecânica somente, sem emprego de substâncias químicas. Utilização de moinhos e extrusora. Polpação termomecânica (TMP): Tratamento com calor antes da moagem ou refinamento para redução da quantidade de energia gasta. 	 O processo mais antigo. Alta eficiência, porém elevado consumo de energia e água o que torna o processo caro. Não há remoção de lignina nem outras substâncias naturais da madeira.
Químicos	 Todo processo que combina a madeira e produtos químicos para o cozimento sob determinada pressão e temperatura em grandes digestores contínuos. Classificam-se de acordo com o material químico a ser utilizado: Processo à soda: hidróxido de sódio; Processo por sulfato (Kraft): Hidróxido de sódio e sulfeto de sódio; Processo por sulfito: Sulfitos alcalinos; Processo Organosolv: organosulfônicos, solventes orgânicos. 	 Reações químicas acontecem quebrando a lignina sem grandes danos às fibras de celulose. Menos energia gasta que para os processos mecânicos. O hidróxido de sódio é altamente corrosivo e de difícil quebra. Método danoso ao meio ambiente.
Semiquímicos e Quimimecânicos (CMP)	 A madeira é pré-tratada quimicamente antes de passar pelo processo mecânico para melhorar a quebra em fibras e reduzir energia requerida durante os processos mecânicos. Podem ser realizadas com qualquer reagente já conhecido. 	-As polpas semiquímicas são feitas com rendimento de 65-85% e as quimimecânicas com rendimento de 85-95%.
	- Irradiação de raios gama: Degradação oxidativa da celulose, mas não separa os componentes orgânicos presentes nas fibras.	- Ineficaz.
Físicos	- Tratamento a vapor: Tratamento térmico da madeira através de vapor, rompimento por hidrólise parcial.	- Ineficaz.
	Tratamento térmico com rápida descompressão do reator, quebrando as estruturas lignocelulósicas.	- Boa extração da lignina. Eficaz.
Biotecnológico	- Polpação Biológica: Uso de enzimas (fenol- oxidases) produzidas por fungos para a quebra da estrutura da lignina, mas sem danos as fibras de celulose.	- Não implantado em escala industrial, em fase de desenvolvimento experimental. Tempo muito longo de cozimento.

(Fonte: CASTRO, 2009; BRITT, 1970; WASTOWSKI, 2009)

Dos processos descritos na Tabela 2.1, o tipo de processo mais utilizado hoje no Brasil e no mundo é o processo químico. Dentre os processos químicos o mais utilizado é o processo kraft de polpação e em segundo lugar é o processo por sulfito. Historicamente, o processo à soda foi o primeiro processo de polpação química com sucesso, porém foi sendo substituído ao longo dos anos por causar grandes danos ambientais (CASTRO, 2009).

Devido ao processo kraft ser o principal processo de polpação e as fibras utilizadas neste trabalho serem oriundas da polpação kraft, a seguir o processo kraft será brevemente descrito.

• Polpação Kraft

A polpação kraft, assim como qualquer outro processo de polpação químico, é constituído das seguintes etapas: descascamento, picagem, classificação, cozimento, lavagem, deslignificação oxidativa, branqueamento final e recuperação do licor preto (CASTRO, 2009; WASTOWSKI, 2009). A Figura 2.7 mostra as etapas do processo kraft dentro de uma planta de produção de papel.

Figura 2.7 – Ilustração do processo de produção de papel (RABELO, 2009).

CASTRO (2009), WASTOWSKI (2009) e BRITT (1970) descrevem em detalhes as etapas da polpação kraft. Neste item as etapas de polpação kraft serão brevemente descritas.

Descascamento A madeira chega à usina de produção de papel de duas maneiras: em grandes toras ou em pedaços oriundos de serraria. As toras são descascadas passando por um tambor descascador ou em um descascador em forma de anel ou, então, um descascado hidráulico. As cascas são retiradas, pois tem baixo teor de fibras e afetam negativamente as propriedades físicas do produto final. Depois de retiradas podem servir de combustível na própria produção da polpa. Para os pedaços vindos de serraria, geralmente, não são necessárias as etapas de descascamento, nem picagem.

Picagem e Classificação Sem as cascas as toras são reduzidas a cavacos mais ou menos do mesmo tamanho. Estes cavacos são selecionados posteriormente para que nenhum cavaco muito grande passe para a etapa de cozimento. A espessura dos cavacos é um parâmetro muito importante já que ele determina a velocidade e profundidade de impregnação das substâncias químicas do cozimento na madeira.

Cozimento É a etapa de cozimento ou digestão da madeira que a maior parte da deslignificação, transformando a madeira em fibras. O cozimento pode acontecer de duas formas: em batelada (descontínuo) ou continuamente (usando um digestor contínuo). No caso descontínuo, os cavacos e o licor branco (solução de hidróxido de sódio e sulfeto de sódio) são colocados em digestores com pressão e temperatura controlados. Quando o nível de deslignificação correto é atingido, a pressão é retirada rapidamente e assim a madeira se desintegra em fibras. Em um digestor contínuo a madeira o licor branco são adicionados continuamente no topo do digestor e a solução vai caindo pelas várias câmaras do digestor por gravidade e no final do mesmo a solução sofre uma diminuição da pressão rapidamente separando as fibras. O grau de deslignificação é caracterizado pelo *-n*úmero Kappa" e é um importante de qualidade da polpa. Ele está diretamente relacionado com a quantidade de lignina ainda presente na polpa e é o parâmetro para estabelecer o fim do cozimento.

Lavagem A separação do licor preto (produtos químicos que não reagiram e também constituintes da madeira dissolvidos) das fibras é chamada de lavagem das polpas. Esta etapa é necessária para a recuperação dos produtos e assim, eles são adicionados ao licor branco e usados novamente.

17
Deslignificação Oxidativa e Branqueamento Final A etapa de deslignificação oxidativa nada mais é do que um branqueamento. O branqueamento é definido industrialmente como qualquer processo de retirada de lignina fora do processo de digestão. Há dois branqueamentos, então: a deslignificação oxidativa e o branqueamento final. A deslignificação oxidativa reduz a quantidade de lignina da polpa pela metade e o branqueamento final remove o resto da lignina. A deslignificação trata a polpa com uma solução altamente alcalina de hidróxido de sódio. E depois a polpa é -lavada" novamente antes do processo de branqueamento final. O processo de branqueamento final é feito com, geralmente, dióxido de cloro e outros compostos não clorados.

2.3. Compósitos Cimentícios Reforçados com Fibras de Celulose

Quando se trata de compósitos cimentícios com fibras de celulose, é importante distinguir os três grupos de compósitos existentes: um grupo seria o de compósitos produzidos pelo método Hastchek; extrusão; e de pré-mistura (premix). Devido à utilização de métodos diferentes, os compósitos destes três grupos diferem quanto às suas propriedades.

O estudo de matrizes cimentícias reforçadas com fibras de celulose iniciou-se com o intuito de viabilizar a utilização das fibras de celulose em substituição às fibras de asbesto na produção de fibrocimento a partir da década de 70 (RODRIGUES, 2004). A partir deste momento diversos estudos foram feitos para caracterizar estes compósitos e também aumentar a sua durabilidade (MOHR, 2007, TONOLI, 2009; BELTRÁN, 2011; CLARAMUNT, 2011). Estes compósitos são produzidos a partir do processo Hastchek (indústria) e em laboratório por um processo que simula o Hastchek onde é preparada uma lama (*slurry*) seguida da retirada de água em excesso por meio de aplicação de vácuo e pressão (BENTUR e MINDESS, 2007) e por isso podem conter um teor de fibras elevado (10% em massa de cimento ou mais).

Em paralelo, também foram estudados compósitos preparados através do método premix (MOHAMED *et al.*, 2010; HOYOS, 2013), porém a quantidade de trabalhos é relativamente menor. Para estes compósitos o teor máximo de fibras fica limitado pela perda de trabalhabilidade (quando mantida a quantidade de superplastificante constante) e gira em torno de 1,0% em volume.

Devido ao fato de que, neste presente trabalho, utiliza-se o método premix de produção dos compósitos, nos itens a seguir serão discutidas propriedades dos compósitos produzidos por tal método.

2.3.1. Processos de Hidratação

As fibras naturais são compostas, como visto no item 2.2.1, de compostos orgânicos como, por exemplo, polissacarídeos. Estas substâncias podem modificar a velocidade das reações de hidratação, ou seja, alterar o processo de hidratação do cimento. Dependendo da composição química e da quantidade de fibras utilizadas, esse efeito pode ser de retardo ou aceleração. Para fibras como sisal, coco, bagaço de cana e juta, foi observado retardo nas reações de hidratação (AGGARWAL e SINGH, 1990; BILBA *et al.*, 2003; CHAKRABORTY *et al.*, 2013). Para as fibras de celulose observam-se os dois tipos de efeito (ARDANUY *et al.*, 2011; HOYOS, 2013).

ARDANUY *et al.* (2011) analisaram a influência das fibras de bambu (com tamanho inferior a 0,2 mm), de pinho kraft não branqueada e de algodão na hidratação da matriz cimentícia. Os resultados obtidos mostraram que houve redução do calor total liberado devido ao uso das fibras de bambu. Já para as fibras de celulose, tanto de pinho quanto de algodão, este calor total liberado aumentou em torno de 10%. Segundo os autores, as mudanças na hidratação dependem da natureza e pureza das fibras. As fibras de bambu tem alto nível de *-im*purezas" como amido, ceras, etc., levando a mistura a uma redução de calor total liberado. Já as fibras de celulose contêm alto teor de celulose e muito menos impurezas, gerando um aumento no total de calor liberado.

PEREIRA *et al.* (2003) observaram também que não só os compostos classificados como extrativos podem afetar a hidratação. Os autores propuseram que a hemicelulose seria um dos compostos presentes nas fibras que afetam significativamente a hidratação dos grãos de cimento. O mecanismo seria que alguns grupos presentes em hemiceluloses são solúveis em álcali e a fase líquida da pasta poderia dissolvê-las. Por exemplo, os grupos carboxílicos são particularmente bons pontos de adsorção. Assim, haveria menos cátions disponíveis para as reações de hidratação.

HOYOS (2013) realizou ensaios semi-adiabáticos para misturas contendo microfibras cristalinas de celulose e depois, com o cálculo de um coeficiente global de transferência de calor, foram obtidas curvas adiabáticas de elevação de temperatura.

As porcentagens de fibra utilizadas foram de 0, 1, 2 e 3% em relação à massa de cimento. Observou-se que a adição destas fibras reduziu significativamente o total de elevação adiabática. Também foram realizados ensaios com nano e micro polpas de celulose obtidas em laboratório. O resultado também foi de diminuição, porém menos acentuada. As razões para a redução do calor total liberado seriam: os polissacarídeos presentes nas fibras formariam uma camada que impede o contato da água com as partículas não hidratada de cimento; formação de complexos entre os íons do CH na solução e os polissacarídeos, aumentando a solubilidade do CH e diminuindo sua precipitação; e a formação de derivados insolúveis pela interação entre os polissacarídeos e a solução alcalina, estes derivados precipitariam em volta das partículas não hidratadas do cimento.

2.3.2. Propriedades Reológicas

A utilização de fibras em materiais cimentícios, normalmente, tem a tendência de reduzir a trabalhabilidade da mistura. A trabalhabilidade da mistura fresca está fortemente relacionada com a fração volumétrica e a relação de aspecto (I/d) das fibras utilizadas. Com as fibras naturais isso não é diferente, porém há mais um fator que afeta a trabalhabilidade: a absorção de água das fibras (TOLEDO, 1997). E as fibras de celulose possuem um alto caráter hidrofílico (TONOLI, 2009). Com o objetivo de mitigar esta perda de trabalhabilidade, geralmente, utiliza-se aditivos superplastificantes.

HOYOS (2013) observou a influência das microfibras cristalinas de celulose (comercial) e micro e nano fibras de celulose oriundas da madeira na trabalhabilidade das misturas através de ensaios de consistência e, a partir dos espalhamentos obtidos, calculou o limite de escoamento. Os teores utilizados foram de 0 a 3% em massa de cimento para as microfibras cristalinas e de 0 a 0,4% das micro e nano fibras. Notou-se que, para o maior teor de microfibras cristalinas, o valor do limite de escoamento aumentou 2,6 vezes em relação à referência. Já para as micro e nano fibras o limite de escoamento aumentou exponencialmente com o aumento no teor de fibras. A autora afirma que este efeito é devido à habilidade dos grupos hidroxila (OH⁻) livres presentes nas microfibras de interagir através de ligações de hidrogênio com os produtos hidratados.

KACI *et al.* (2011) estudaram o efeito das fibras de celulose nas propriedades reológicas de misturas contendo cimento Portland, areia fina, fillers e aditivos. De maneira similar aos resultados de HOYOS (2013), eles também observaram que o

aumento da tensão de escoamento com a aumento das fibras aconteceu de maneira não-linear.

NILSSON e SARGENIUS (2011) obtiveram propriedades reológicas de argamassas contendo até 3kg de fibras de celulose por m³ com auxílio de um viscosímetro. Foi observado que a adição de fibras mudou drasticamente os valores de limite de escoamento e viscosidade plástica. Para a mistura com maior teor de fibra, o limite de escoamento foi de 738 Pa contrastando com o valor do limite para a referência de 62 Pa. Com relação à viscosidade plástica, a diferença foi entre 0,9 Pa.s para a referência e 8,3 Pa.s para o teor de 3kg/m³.

2.3.3. Propriedades Mecânicas

2.3.3.1. Resistência à Compressão

A presença de fibras naturais em compósitos cimentícios, geralmente, reduz a resistência à compressão (TOLEDO FILHO, 1997; LIMA, 2004; RAMAKRISHNA e SUNDARARAJAN, 2005) e para as fibras de celulose esta tendência também é observada (LIN *et al.*, 1994; BLANKENHORN *et al.*, 2001; PEHANICH *et al.*, 2004).

LIN *et al.* (1994) pesquisaram a compatibilidade entre alguns tipos de cimento e fibras de folhosas, fibras recicladas de jornal e fibras kraft recicladas de papel. Os teores de fibra utilizados foram de 4,24% da massa total da mistura. Os compósitos foram ensaiados aos 28 dias e observou-se que a adição das fibras reduziu drasticamente a resistência à compressão. A redução foi de pelo menos 48%. Entre as misturas fibrosas, a que obteve maior resistência foi aquela contendo fibras de folhosas.

BLANKENHORN *et al.* (2001) investigaram o efeito do tratamento das fibras de celulose nas propriedades de compósitos cimentícios. Apesar do aumento da resistência à compressão dos compósitos contendo as fibras tratadas em relação àqueles que continham fibras não tratadas, ambos os tipos de compósito obtiveram redução de resistência à compressão quando comparados com a referência.

PEHANICH *et al.* (2004) também avaliaram tratamentos para as fibras de celulose em compósitos cimentícios, porém com silicato de sódio, silicato de potássio e silano. De forma similar, também não foram obtidas melhoras com relação à resistência à compressão.

2.3.3.2. Resistência à Flexão

O comportamento de compósitos submetidos a esforços de flexão é influenciado pelo tipo, teor e comprimento das fibras, bem como pela aderência fibramatriz. Para os compósitos contendo fibras de celulose, tanto um aumento quanto uma diminuição na resistência à flexão é observada. Entretanto, para ambos os casos são observados que a ruptura dos compósitos não é frágil e há um aumento na tenacidade.

Nos estudos de LIN *et al.* (1994), BLANKENHORN *et al.* (2001) e PEHANICH *et al.*, 2004, observou-se tanto um aumento na resistência à flexão quanto na tenacidade quando se utilizam fibras de celulose. Entretanto, o método de produção dos compósitos foi por meio do método Hastchek, possibilitando o uso de 5% em fração volumétrica de fibras.

HOYOS *et al.* (2013) obtiveram resultados de resistência a compressão e flexão para pastas contendo microfibras cristalinas de celulose em teores de 0 e 3% em massa de cimento. A adição de fibras reduziu a resistência à flexão em 13%, respectivamente, quando comparada com a referência, e também foi observada ruptura frágil.

BÉLTRAN (2011) avaliou, dentre outros aspectos, a influência de fibras de coníferas no comportamento de compósitos submetidos à flexão. Para compósitos contendo 2% (em volume) de fibras de coníferas de 3 diferentes espécies, observouse diminuição da resistência à flexão e a abertura de apenas uma fissura, mas a ruptura não foi completamente frágil. A abertura desta única fissura continuou aumentando com o aumento da carga aplicada. Em um segundo momento, a autora conseguiu obter compósitos com múltipla fissuração somente com uma fração volumétrica de 5% e uma matriz com resistência mais baixa.

3. MATERIAIS E MÉTODOS

Neste capítulo serão descritas as propriedades dos materiais utilizados na produção das pastas estudadas e a metodologias empregadas na caracterização destes, os procedimentos adotados para produção e cura das pastas e os métodos utilizados para realização dos ensaios no estado fresco e no estado endurecido.

3.1 Métodos para Caracterização dos Materiais

Foram utilizados os seguintes materiais para a produção das pastas e compósitos: (i) Cimento Portland classe G; (ii) Sílica ativa; (iii) Quartzo moído chamado comercialmente de sílica 120#; (iv) Microfibras de celulose oriundas de pinho da espécie *Pinus Radiata;* (v) Microfibras de celulose extraídas de eucalipto; (vi) Aditivo superplastificante de terceira geração a base de éter carboxílico Glenium 51, (vii) água deionizada.

O cimento utilizado no presente trabalho foi o cimento CPP – classe G da marca Holcim, já a sílica ativa e o quartzo moído (sílica 120#) foram fornecidos pela marca Silmix e Mineração Jundú, respectivamente. O quartzo moído é chamado comercialmente de sílica 120#, pois foi classificado na peneira ABNT 120 (BALTHAR, 2010).

As fibras de celulose utilizadas foram as de eucalipto e pinho extraídas pelo método de polpação kraft, porém somente a fibra de eucalipto é branqueada. As fibras de eucalipto foram fornecidas pela empresa Suzano. O comprimento das fibras, segundo a empresa, foi de 0,8 mm. A umidade in natura das fibras é de 8,8 % (dado obtido seguindo a ASTM C642 – 97). Já as fibras de pinho foram da espécie Pinus *Radiata*. A polpa foi fornecida pela empresa Arauco. O comprimento das fibras, segundo a empresa, era de 4 mm. A umidade in natura das fibras é de 8,3 % (dado obtido seguindo a ASTM C642 – 97).

O aditivo superplastificante escolhido foi o Glenium 51 de terceira geração a base de éter carboxílico. Conforme dados fornecidos pelos fabricantes do produto, o material apresenta 29,8% de sólidos e massa específica de 1,07 g/cm.

A água proveniente da rede de abastecimento da cidade do Rio de Janeiro passou por um processo de deionização antes de sua utilização neste trabalho.

3.1.1 Massa Específica

A massa específica dos materiais granulares e das fibras foram determinados por ensaios realizados em *Picnômetro a Gás AccuPyc 1340 (Micromeritics®)* do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.1). O ensaio é baseado na obtenção do volume de uma massa conhecida da amostra através da variação de pressão do gás em um volume previamente calibrado. A massa específica média de cada material foi realizada a partir de 05 (cinco) repetições.

Figura 3.1 - Picnômetro a gás AccuPyc 1340 da Micromeritics®.

Os valores de massa específica obtidos para o cimento, a sílica ativa, o quartzo moído, as fibras de eucalipto e pinho são apresentados na Tabela 3.1.

Material	Massa Específica (g/cm³)
Cimento CPP-classe G	3,26
Sílica Ativa	2,41
Sílica 120#	2,68
Fibras de Eucalipto	1,68
Fibras de Pinho	1,60

Tahala 3.1 🛝	lacea ecnecífica	doe matoriaie	aranularee	a dae fibrae
1 abela 5. i – iv	nassa especínica	uus matenais	y anulaites d	z uas iibias.
	•		0	

3.1.2 Granulometria

As distribuições granulométricas do cimento e da sílica 120# foram obtidas por meio de ensaio de granulometria a laser realizado no equipamento *Malvern Mastersizer*® do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.2). O cimento foi disperso em álcool etílico absoluto P.A. por ser inerte e não reagir quimicamente com o cimento durante a realização do ensaio. O meio suspensor utilizado para o ensaio da sílica 120# foi a água deionizada. Em ambos os ensaios a

velocidade de agitação foi de 1500 rpm e o tempo de dispersão de 5 min. A quantidade de material foi estabelecida de modo que o nível de obscuração alcançasse um valor entre 10 e 20%.

A distribuição granulométrica da sílica ativa foi obtida pelo ensaio de sedigrafia realizado em *Sedigraph 5100 da Micrometrics*® do Centro de Tecnologia Mineral (CETEM).

Figura 3.2 – Granulômetro a laser Malvern Mastersizer.

As distribuições granulométricas do cimento, da sílica ativa e do quartzo moído são apresentadas na Figura 3.3. A curva granulométrica da sílica ativa foi obtida por BALTHAR (2010). O tamanho médio das partículas (D_{50}) do cimento, da sílica ativa e do quartzo moído foi de 19,44 µm, 0,4 µm e 130 µm, respectivamente. Além disso, o cimento apresentou um D_{90} de 56,24 µm, a sílica ativa um D_{90} de 6 µm e o quartzo moído um D_{90} de 193 µm.

Figura 3.3 - Curva granulométrica dos materiais granulares.

3.1.3 Composição Química

As composições químicas da sílica 120# e da sílica ativa foram determinadas através de análise semi-quantitativa por espectroscopia por fluorescência de energia dispersiva de raios-X em equipamento *Shimadzu®, modelo EDX 720 Rayny,* do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.4). Todos os elementos na faixa do Ti ao U e do C ao SC foram pesquisados e os resultados são dados em percentuais dos óxidos SiO₂, Al₂O₃, Fe₂O₃, CaO, K₂O, SO₃, MnO, SrO, TiO₂, CuO e P₂O₅.

Figura 3.4 - Equipamento *Shimadzu® Modelo EDX 720 Rayny* utilizado para determinação das composições químicas.

A composição química do cimento CPP classe G foi feita pelo Instituto de Pesquisas Tecnológicas (IPT) em São Paulo. As porcentagens dos óxidos foram determinadas também através de análise semi-quantitativa por espectroscopia por fluorescência de energia dispersiva de raios-X.

As composições químicas das fibras de eucalipto e pinho foram realizadas no Laboratório de Celulose e Papel da Universidade Federal de Viçosa (UFV). As amostras das fibras foram preparadas de acordo com o procedimento padrão da *Technical Association of the Pulp and Paper Industry (Tappi), T 257 cm-85.* O teor de extrativos foi determinado de acordo com o procedimento padrão da *Technical Association of the Pulp and Paper Industry (Tappi), T 264 cm-97.* Já os teores de celulose e hemicelulose foram calculados utilizando-se procedimentos matemáticos descritos por WALLIS *et al.* (1996) e também os teores dos açúcares individuais. Os teores de glicanas, xilanas, mananas, arabinanas e galactanas foram determinados de acordo com o procedimento DIONEX, equipado com

detector PAD (detecção por amperometria pulsada). O teor de lignina foi obtido conforme os procedimentos da *Technical Association of the Pulp and Paper Industry (Tappi), Useful method UM 250* e *Technical Association of the Pulp and Paper Industry (Tappi), T 222 om-98.*

A Tabela 3.2 apresenta o resultado da composição química do cimento. A composição química demonstrou que o cimento é composto predominantemente pelo óxido de cálcio (63,5%) e dióxido de silício (20,9%). Utilizou-se o cimento CPP- classe G devido ao fato deste cimento não conter adições minerais, ou seja, é o mais puro que os demais cimentos.

Determinações	Composição (%)
Perda ao fogo (PF)	1,26
Anidrido silícico (SiO ₂)	20,9
Óxido de alumínio (Al ₂ O ₃)	4,32
Óxido férrico (Fe ₂ O ₃)	5,05
Óxido de cálcio (CaO)	63,5
Óxido de magnésio (MgO)	1,60
Anidrido sulfúrico (SO ₃)	2,29
Óxido de sódio (Na ₂ O)	0,26
Óxido de potássio (K ₂ O)	0,65
Sulfeto (S ²⁻)	não detectado
Óxido de cálcio livre (CaO)	2,60
Resíduo insolúvel (RI)	0,34
Anidrido carbônico (CO ₂)	0,58
Equivalente alcalino (em Na ₂ O)*	0,68
Material carbonático (em CaCO ₃)**	1,32

Tabela 3.2 – Composição química do cimento utilizado.

* Equivalente alcalino (em Na₂O) = % Na₂O + 0,658 x %K₂O.

** Teor calculado estequiometricamente por meio do resultado de ensaio do anidrido carbônico $(CaCO_3 = \% CO_2 \times 2,27)$.

As composições químicas da sílica ativa e da sílica 120# são apresentadas na Tabela 3.3. Observa-se que os dois materiais são compostos principalmente por dióxido de silício (95,41% para a sílica ativa e 95,47% para a sílica 120#).

Composto Químico	Sílica Ativa	Sílica 120#		
	Composição (%)			
SiO ₂	95,41	95,47		
SO ₃	1,67	1,66		
P_2O_5	0,99	1,31		
Al ₂ O ₃	-	1,02		
K₂O	0,91	-		
CaO	0,85	0,36		
Fe ₂ O ₃	0,09	0,14		
MnO	0,03	0,03		
CuO	-	0,01		
Outros	0,05	-		

Tabela 3.3 – Composição química da sílica ativa e da sílica 120#.

A composição química das fibras de eucalipto e pinho é mostrada na Tabela 3.4. Embora a análise termogravimétrica não indique a presença de hemicelulose, através da composição química (ver item 3.1.4) é possível observar que há hemicelulose em ambas as fibras. As coníferas, geralmente, apresentam maior teor de lignina e hemicelulose que as fibras de folhosas (BÉLTRAN, 2011). As fibras de eucalipto apresentaram teor de celulose de 84,5%, 15,5% de hemicelulose e nenhuma lignina. Sendo este último valor já esperado, uma vez que as fibras, além de terem passado por um processo químico de polpação, elas foram branqueadas. Por sua vez, as fibras de pinho, por serem não-branqueadas, apresentaram lignina e extrativos.

Tabela 3.4 – Composição química das fibras kraft branqueada de eucalipto e das	fibras I	kraft
não-branqueadas de pinho.		

Composto	Fibras de Eucalipto	Fibras de Pinho
Composio	Composição (%	
Celulose	84,5	77,1
Hemicelulose	15,5	18,89
Lignina Total	ND	3,87
Extrativo Total	ND	0,14

3.1.4 Análises Térmica Diferencial e Termogravimétrica

As análises térmica diferencial (DTA) e termogravimétrica (TG) das fibras foram realizadas no equipamento SDT Q600 da *TA Instruments*® do Laboratório de

Estruturas e Materiais da COPPE/UFRJ. O procedimento e as condições de ensaio são descritas a seguir:

- Inicialmente, foi pesada uma quantidade de aproximadamente de 10 mg de amostra em um cadinho de platina e o cadinho foi colocado no equipamento;
- A amostra foi aquecida até 35 °C e esta temperatura foi mantida por 1 hora com a finalidade de eliminar a água livre presente na amostra;
- Após a isoterma, a amostra foi submetida a um aquecimento sob a taxa de 10 °C/min até a temperatura de 1000 °C.

Deve-se ressaltar que todas as análises foram feitas sob uma atmosfera inerte (N₂) com um fluxo máximo de nitrogênio de 100 ml/min e os resultados das análises foram expressos em porcentagem de massa calcinada do cimento.

A Figura 3.5 mostra as análises termogravimétrica e térmica diferencial da fibra de eucalipto. Na curva DTG, observa-se um pico inicial entre 60 e 100 °C, que corresponde à vaporização da água presente na amostra, e também um pico que ocorre a cerca de 360°C, devido à decomposição da celulose. Outra decomposição também era esperada por volta de 310 °C que estaria relacionada principalmente com a volatilização da hemicelulose, porém isso não ocorre. Isto deve ser atribuído ao fato da fibra ter passado por processo químico de polpação, e, assim, ter todos ou parte dos componentes da hemicelulose modificados. Ao final, a lignina é o componente mais resistente a degradação. Ela se estende até altas temperaturas, não havendo assim um pico de decomposição característico (BARNETO *et al.*, 2011; HOYOS, 2013).

Figura 3.5 – Análises termogravimétrica e térmica diferencial da fibra de eucalipto.

A Figura 3.6 mostra as análises termogravimétrica e térmica diferencial da fibra de pinho. O ressalto na perda de massa correspondente principalmente a volatilização da hemicelulose também não é observada para essa polpa. De forma análoga às fibras de eucalipto, o principal pico aparece em torno de 360°C, que é devido, principalmente, à volatilização da celulose.

Figura 3.6 – Análises termogravimétrica e térmica diferencial da fibra de pinho.

3.1.5 Análise por Microscopia Eletrônica de Varredura

As imagens da seção transversal e da morfologia das fibras foram obtidas em microscópio eletrônico de varredura JEOL® JSM-6460 LV com captação de sinais de elétrons secundários e de elétrons retroespalhados, do Laboratório Multiusuário de Microscopia Eletrônica e Microanálise (LABMIC) do Programa de Engenharia Metalúrgica e de Materiais (COPPE/UFRJ). As imagens foram obtidas por elétrons secundários e o feixe de elétrons principal foi gerado a partir de filamento de tungstênio operando a 20 kV. As amostras foram aderidas por adesivo de carbono em porta-amostras e recobertas com fina camada de ouro através de um metalizador.

O diâmetro equivalente médio das fibras de eucalipto foi determinado por imagens de microscopia eletrônica de varredura das seções transversais das fibras com 10 medições aleatórias. A partir destas imagens, a área da seção (que é oval, vide Figura 3.8) foi obtida e calculou-se o diâmetro de uma circunferência equivalente com mesma área. O valor médio obtido para o diâmetro equivalente foi de $9 \pm 2 \mu m$. A Figura 3.7 mostra as fibras vistas no microscópio eletrônico com aumento de 60 vezes e, no detalhe, a imagem de uma fibra.

Figura 3.7 - Fibras kraft de eucalipto vistas por microscopia eletrônica de varredura com aumento de 60 vezes. No detalhe, a imagem de uma fibra.

Na Figura 3.8, pode-se observar a seção transversal da fibra de eucalipto. A fibra de eucalipto possui forma tubular com uma cavidade interna oca, isto é o lúmen, uma característica típica das fibras vegetais, seção transversal ovalada e parede espessa.

Figura 3.8 – Seção transversal das fibras kraft de eucalipto.

O diâmetro equivalente médio das fibras de pinho foi determinado por imagens de microscopia eletrônica de varredura com 20 medições aleatórias e de maneira similar ao diâmetro das fibras de eucalipto. O valor médio obtido para o diâmetro equivalente foi de 20 \pm 3 μ m. A Figura 3.9 mostra as fibras vistas no microscópio eletrônico com aumento de 60 vezes e, no detalhe, a imagem de uma fibra.

Figura 3.9 - Fibras kraft de pinho vistas por microscopia eletrônica de varredura com aumento de 60 vezes. No detalhe, a imagem de uma fibra.

Na Figura 3.10, mostra-se a seção transversal da fibra de pinho. A fibra de pinho, assim com a de eucalipto, possui forma tubular com uma cavidade interna oca, um único lúmen, seção transversal oval e uma parede espessa.

Figura 3.10 – Seção transversal das fibras kraft de pinho.

3.1.6 Compatibilidade e Ponto de Saturação

A compatibilidade e o ponto de saturação do cimento com o superplastificante (SP) foram determinados a partir do escoamento das pastas em cone de *Marsh* (Figura 3.11). O ensaio consiste em registrar o tempo necessário para uma pasta de cimento escoar e preencher uma proveta de 1000 ml, através de um cone com abertura de 5 mm de diâmetro. A mesma pasta é utilizada nos tempos de escoamento de 10, 30 e 60 minutos, a contar do início do contato da água/superplastificante com o cimento. Todas as misturas foram realizadas com um misturador mecânico e as relações água/cimento foram de 0,45.

As porcentagens de superplastificante (SP) utilizadas foram 0,20; 0,25; 0,30; 0,35 e 0,4% (porcentagem do teor de sólidos do superplastificante em relação à massa de materiais cimentícios — cimento mais sílica ativa).

O procedimento de mistura e medição segue os seguintes passos:

- Pesagem da água e do SP no copo do misturador com o auxílio de balança de precisão de 0,01 g;
- Para o primeiro ponto de escoamento, mistura-se por 10 s a água e o superplastificante e adicionar o cimento em um tempo de até 50 s;
- Após o tempo de 1 min e 30 s, contados a partir do contato da água com o cimento, o misturador é desligado durante 15 s, para limpeza da parede do copo. A seguir mistura-se novamente até completar 8 min;
- Completados 8 min de mistura, a pasta é posta em descanso por 1 min, para posterior mistura durante 30 s. Em seguida, é vertida no cone

Marsh dentro do tempo de 30 s restantes, ou seja, até completar 10 min;

- A pasta é escoada pela abertura do funil ao completar 10 min, sendo medido o tempo para preencher a proveta de 1000 ml. Ao final do processo o material volta ao recipiente e permanece em descanso até o próximo tempo de escoamento;
- Para o ponto de escoamento de 30 min, o material em repouso é misturado 1 min antes de atingir seu tempo, de forma a ser dividido em 30 s de mistura e 30 s para verter o material no cone e iniciar seu escoamento durante determinado período de tempo para completar a proveta de 1000 ml. Da mesma forma procede-se com o tempo de escoamento de 60 min.

Ao final do ensaio foram gerados os gráficos do tempo de escoamento *versus* dosagem de SP, no qual se verifica a compatibilidade entre o cimento e o SP, além do ponto de saturação.

Figura 3.11 – Ensaio de compatibilidade e ponto de saturação pelo cone Marsh.

A Figura 3.12 apresenta os resultados do ensaio de compatibilidade entre os materiais cimentícios (cimento + sílica ativa) e o superplastificante Glenium 51. Notase que o tempo de escoamento diminuiu com o aumento no teor de superplastificante para os intervalos de tempo estudados, até um teor de superplastificante de 0,3%. Após este valor não houve mudanças significativas no tempo de escoamento. Os resultados indicam que existe compatibilidade entre os materiais cimentícios e o superplastificante e que o ponto de saturação é de 0,3%.

Figura 3.12 – Ponto de saturação para a mistura de cimento e sílica ativa.

3.2 Dosagem, Preparo e Cura das Pastas

A composição dos compósitos produzidos neste trabalho é apresentada na Tabela 3.5. Foram utilizados dois tipos de fibra de celulose: eucalipto (EU) e pinho (PI). As frações volumétricas de fibras utilizadas foram de 0,25, 0,50 e 1,0%. Os materiais cimentícios utilizados foram a sílica ativa (SA) e o cimento (C) nas porcentagens de 35% e 65% da massa total de materiais cimentícios, respectivamente, conforme foi explicado no item 2.1.2. Para todas as misturas o teor de superplastificante (SP) foi o mesmo com o intuito de que não houvesse interferência nas curvas dos ensaios de calorimetria adiabática e isotérmica. O valor foi o determinado pelos ensaios de compatibilidade e ponto de saturação (item 3.1.4) que é igual a 0,3% em relação à massa de materiais cimentícios (C+SA). A relação água/materiais cimentícios (w/mc) foi de 0,55.

Utilizou-se também um agregado fino, quartzo moído (A), numa relação 1:1 com os materiais cimentícios. Foi necessário utilizar um agregado, pois se não fosse assim o consumo de cimento por m³ seria alto (em torno de 800 kg), por consequência o total de elevação adiabática seria muito elevado também, indo muito além da limitação dos calorímetros adiabáticos (temperatura de ebulição da água). Além disso, seria também provável a ocorrência de problemas com retração devido à falta de agregado.

Mistura	С	SA	Α	w	SP	EU	PI
REF	511,0	275,1	786,1	432,3	2,36	-	-
EU 0,25%	509,7	274,4	784,1	431,3	2,35	4,2	-
EU 0,50%	508,4	273,7	782,1	430,2	2,35	8,4	-
EU 1,0%	505,9	272,4	778,2	428,0	2,33	16,8	-
PI 0,25%	509,7	274,4	784,1	431,3	2,35	-	4,0
PI 0,50%	508,4	273,7	782,1	430,2	2,35	-	8,0
PI 1,0%	505,9	272,4	778,2	428,0	2,33	-	16,0

Tabela 3.5 – Composição (kg/m³) das misturas utilizadas neste trabalho.

As fibras de eucalipto foram fornecidas em forma de flocos aglomerados (Figura 3.13). Assim, foi necessário submetê-las a um processo de dispersão antes de introduzi-las nas misturas. Para isso, utilizou-se o dispersor ultrassônico para dispersar as fibras de eucalipto. O procedimento de dispersão adotado foi semelhante ao descrito em KONSTA-GDOUTOS *et al.*(2010), porém não foi utilizado nenhuma substância surfactante no processo.

Figura 3.13 - Fibras de eucalipto antes da dispersão.

Visando a melhor dispersão das fibras, optou-se, em um primeiro momento, dispersar as fibras com a quantidade total de água da mistura e, antes de iniciar o procedimento de mistura, verter a solução no copo do misturador. Todavia, para a fração mais alta de fibras (1%), ao adicionar os materiais secos, a mistura com uma aparência muito -seca" e não foi possível concluir o procedimento. Assim, optou-se por separar a maior quantidade possível de água da mistura para dispersão das fibras, mas permitindo também que, com a quantidade restante de água, haja uma boa homogeneização da pasta antes da adição das fibras. As quantidades foram de 75 ml e 200 ml para um volume de pasta de 600 ml e 1.600 ml, respectivamente.

O procedimento de dispersão segue os seguintes passos:

- Pesagem da quantidade de fibras de eucalipto em um bécker com capacidade de 250 ml, adicionando logo em seguida a quantidade de água reservada correspondente da mistura;
- Após a adição da água, o bécker foi colocado no dispersor ultrassônico Sonics & Materials® modelo VCX750 do Laboratório de Estruturas da COPPE/UFRJ e levantado até que o nível da solução coincida com a linha indicada no equipamento (Figura 3.14b);
- O equipamento é ligado e programado para que a solução seja submetida a três minutos de sonicação com um ciclo de 20s ligado/20s desligado para evitar superaquecimento do material. A amplitude utilizada foi de 50%;
- Inicializa-se o processo de dispersão. Ao final, o aspecto das fibras dispersas é mostrado na Figura 3.14c.

Figura 3.14 – Processo de dispersão das fibras de eucalipto: (a) dispersor ultrassônico *Sonics* & *Materials* modelo VCX 750; (b) fibras durante o processo de dispersão; (c) fibras dispersas.

As fibras kraft de pinho foram fornecidas em forma acartonada como mostra a Figura 3.15. Assim como as fibras de eucalipto, antes de adicioná-las em misturas foi preciso dispersá-las. Para isso, dispersaram-se as fibras de forma semelhante ao processo de dispersão brevemente descrito em SILVA (2002). Entretanto, para a

filtração das fibras, não foi utilizada vácuo conforme procedeu o autor em sua pesquisa.

Figura 3.15 – Fibra de pinho em forma acartonada.

As fibras foram adicionadas à água, numa concentração aproximada de 2% em massa, no misturador de palhetas *Chandler* com capacidade de 1 litro do Laboratório de Estruturas da COPPE/UFRJ. Foram misturadas com uma velocidade em torno de 4000 rpm por 5 minutos. A seguir, as fibras foram filtradas com um tecido feito de elastano (*lycra*®) e pesadas para determinação da quantidade de água retida pelas fibras. A quantidade de água retida pelas fibras foi em torno de 550% em relação a massa de fibras utilizadas no início do processo. No final, as fibras foram refrigeradas num recipiente fechado na sala climatizada à 4 \pm 2 °C. A Figura 3.16 mostra os equipamentos e ilustra os procedimentos realizados.

Figura 3.16 – Processo de dispersão das fibras kraft em água: (a) misturador de palhetas *Chandler;* (b) filtração com *lycra* e (c) sala climatizada a 4°C utilizada para refrigeração.

O procedimento de preparo das pastas foi feito com auxílio do misturador de palhetas *Chandler* com capacidade de 3 litros do Laboratório de Estruturas da COPPE/UFRJ (ver Figura 3.17) e consistiu em:

- Pesagem e homogeneização dos materiais pulverulentos em um saco plástico. Para o preparo das pastas fibrosas, as fibras de eucalipto foram pesadas separadamente em um bécker e, na sequência, foi adicionada a água reservada para a dispersão das fibras, conforme já descrito. Para as pastas contendo fibras de pinho foram retiradas da câmara de 4°C as fibras já dispersas e pesadas também em um recipiente a parte;
- Pesagem do superplastificante no copo do misturador, adicionando em seguida a água;
- Agitação da água de mistura (água e aditivo) em velocidade de 3800 rpm durante 10 segundos;
- Adição da mistura seca aos líquidos com auxílio de um funil e uma espátula em um tempo de até 2 minutos, para volumes de pasta iguais ou inferiores a 600 ml, mantendo a velocidade igual a 3800 rpm. Para volumes maiores que 600 ml, adição dos materiais foi em um tempo de até 2 minutos e 30 segundos. Após este tempo, o misturador é desligado durante um minuto e 30 segundos, para limpeza da parede do copo;
- Agitação da pasta por 4 minutos com a velocidade constante de 2400 rpm. Na metade deste tempo, pausa de um minuto para uma nova limpeza da parede do copo e, para as pastas fibrosas, verificação do estado de dispersão das fibras. Para as pastas fibrosas a adição das fibras ocorre nos primeiros 2 minutos.

Figura 3.17 – Misturador *Chandler* utilizado para o preparo das misturas.

Ressalta-se que, para volumes de pasta maiores de 600 ml, manteve-se o tempo de mistura e pausas, porém velocidades maiores foram usadas com a finalidade de se manter constante a energia de mistura a qual, para o procedimento adotado nesta pesquisa, equivale a 3,5 kJ/kg de pasta. Para o cálculo da energia de mistura, foi utilizada a equação desenvolvida por VORKINN e SANDERS (1993). Tal equação permite a determinação da energia de mistura/massa de mistura em função da rotação e do tempo de mistura em cada rotação e ela é apresentada a seguir.

$$\frac{E}{M} = \frac{k}{V} \times \sum \left[\left(\frac{2 \times \pi \times rpm}{60} \right)^2 \times t \right]$$
 Equação 3.1

Onde:

E é a energia de mistura, em quilojoules (kJ);

M é a massa da pasta, em quilogramas (kg);

K é uma constante determinada experimentalmente, que é igual a 6,1 x 10⁻⁸;

- V é o volume de pasta, em litros (I);
- t é o tempo de mistura, em segundos (s).

Para realizar os ensaios mecânicos, como compressão uniaxial, triaxial e flexão, foram moldados corpos-de-prova e o procedimento de moldagem é descrito a seguir.

As misturas, após o seu preparo, foram vertidas nos moldes em duas camadas de pasta. Em cada camada, foram realizados movimentos lentos e circulares com

auxílio de um bastão de vidro por 30 segundos sendo os primeiros 15 segundos no sentido horário e, depois, anti-horário. Ao final da segunda camada, 20 batidas leves foram dadas no fundo do molde com auxílio de um soquete metálico. A finalidade deste procedimento foi o de eliminar bolhas de ar provenientes do processo de mistura dos materiais. Os moldes preenchidos foram então colocados, junto com panos úmidos, para curar em um pequeno armário fechado por portas de acrílico durante um período de 24 horas à temperatura de 21 ± 1 °C e umidade relativa igual a 100% (Figura 3.18). Após este período, os corpos-de-prova foram desmoldados e a cura dos mesmos ocorreu em uma câmara de cura com temperatura de 21 ± 1 °C e umidade relativa igual a 100%, onde permaneceram até um dia antes da idade de ensaio. Neste último dia é necessário para que os corpos-de-prova sejam instrumentados e faceados.

Figura 3.18 – Câmara de cura dos corpos-de-prova durante as primeiras 24 horas.

3.3 Caracterização das Pastas no Estado Fresco

3.3.1 Água Livre

O teor de água livre foi determinado utilizando o procedimento descrito na ABNT NBR 9831 (2006). As pastas foram preparadas e homogeneizadas conforme descrito no item 3.1.8. Após a homogeneização, uma massa de pasta de 760 \pm 5 g foi vertida em um frasco de Erlenmeyer (Figura 3.19). O frasco foi lacrado em seguida e mantido em repouso por um período de 2 horas. Ao final, a quantidade de fase sobrenadante foi retirada com auxílio de uma pipeta e seu valor, em ml, registrado. O conteúdo de água livre é calculado conforme a Equação 3.2.

$$A_{l} = \frac{V_{al} \times \rho}{m_{P}} \times 100$$
 Equação 3.2

Onde:

 A_l é o conteúdo de água livre da pasta, em porcentagem volumétrica;

 V_{al} é o volume de fluido sobrenadante coletado, em mililitros;

 m_P é a massa inicial da pasta, em gramas;

 ρ é a densidade da pasta, em gramas por centímetro cúbico, para pastas preparadas somente com cimento CPP – classe G pode ser considerada igual a 1,90 g/cm³.

Figura 3.19 - Ensaio de água livre.

3.3.2 Reologia

3.3.2.1 Índice de Consistência

De acordo com NOCUN-WCZELIK *et al.* (2013), a utilização de um alto teor de superplastificante pode alterar a evolução do calor de hidratação, a hidratação de diferentes cimentos e a formação de produtos hidratados. Com o objetivo de evitar tal efeito durante os ensaios de calorimetria, optou-se por manter a taxa de superplastificante igual para todas as misturas. Logo, não foi estabelecido um valor fixo para consistência.

A consistência das pastas foi determinada através da mesa de consistência padrão, segundo a ABNT NBR 13276 (2002). Na Figura 3.20 mostra-se o espalhamento da mistura REF (mistura de referência).

Figura 3.20 - Ensaio de espalhamento na mesa de consistência padrão.

3.3.2.2 Tensão de Escoamento – Vane Test

Para caracterização reológica de pastas, utilizou-se o reômetro *Brookfield*® modelo *DV-III Ultra* e a geometria escolhida foi a de palhetas em cruz (*vane spindle*). A Figura 3.21 mostra as palhetas e o equipamento utilizados.

(a)

(b)

Figura 3.21 – Reômetro Brookfield modelo DV-III Ultra do Laboratório de Estruturas e Materiais da COPPE/UFRJ: (a) conjunto de palhetas em formato de cruz (vane spindle); (b) reômetro com um computador acoplado para aquisição dos dados.

O reômetro *Brookfield*® modelo *DV-III Ultra* é um aparelho que consegue medir parâmetros reológicos de um fluido, como viscosidade e limite de escoamento, de

forma programável, isto é, evitando erros aleatórios devidos ao manuseio humano. O seu princípio de funcionamento é rotacionar uma palheta (que está imersa no fluido de teste) através de uma mola calibrada, as duas conectadas por uma rosca. A resistência do fluido ao movimento da palheta é medida pela deflexão da mola. E esta deflexão é medida com um transdutor rotativo. A Figura 3.22 ilustra o funcionamento do reômetro. O valor de torque máximo que o reômetro pode alcançar é de 5,75 mN.m.

Figura 3.22 – Representação esquemática do funcionamento do reômetro *Brookfield* modelo *DV-III Ultra* (adaptado de BROOKFIELD, 2012).

O método Vane ou método do rotor de hélice é um método simples, mas eficiente de medir o limite de escoamento dentre outras propriedades de fluidos não newtonianos. BARNES e NGUYEN (2001) pontuaram as principais vantagens deste método perante outros métodos. Eles destacam a simplicidade de fabricação, a facilidade de manter a palheta limpa e, o mais importante, a expressiva mitigação dos efeitos de escorregamento do fluido pela superfície da palheta (*wall-slip effects*). Este método tem sido amplamente utilizado por diversas áreas incluindo a área de engenharia dos alimentos, de dispersões coloidais inorgânicas, da geotecnia e também na área de materiais cimentícios (BARNES e NGUYEN, 2001).

O método consiste em, basicamente, submeter a amostra a uma taxa de cisalhamento muito baixa e constante, geralmente de 36°/min (0,1 rpm), até que a amostra comece a fluir. O valor da tensão de cisalhamento em que a amostra começa a fluir é chamado de limite de escoamento. Até este ponto, a amostra se comporta linearmente, ou seja, se a tensão fosse cessada a amostra não apresentaria deformação. A partir deste ponto, a amostra começa a fluir e a deformação é

temporariamente irreversível (SCHRAMM, 2006). A Figura 3.23 mostra uma curva típica tensão de cisalhamento *versus* tempo para fluidos não-newtonianos, como pastas, submetidos a taxa de deformação constante.

Figura 3.23 – Curva típica tensão de cisalhamento *versus* tempo (adaptado de BARNES e NGUYEN, 2001).

É importante ressaltar a divergência entre os pesquisadores em relação a um conceito preciso de limite de escoamento. Em alguns trabalhos, o limite de escoamento é definido como o ponto em que se observa o fim do trecho elástico, em outros como o valor máximo da tensão. Ainda há trabalhos em que o limite de escoamento é dado como a tensão constante observada ao final da região de escoamento do fluido (BARNES e NGUYEN, 2001). Nesta pesquisa a definição adotada foi a da máxima tensão para o limite de escoamento, por se tratar do conceito mais utilizado em pesquisas com materiais cimentícios (BAUER *et al.*, 2007; MAHAUT *et al.*, 2008; SOUZA, 2005).

O procedimento utilizado para o ensaio de reologia foi:

- Após preparo de 600 ml de mistura conforme descrito no item 3.2, a pasta foi vertida em um bécker de 600 ml e, a cada 200 ml, foi utilizado um soquete para uniformização da superfície dando 20 batidas;
- Preenchido o bécker, o mesmo foi posicionado na base de aço e a palheta foi atarraxada ao equipamento tomando cuidado com a mola em espiral;

 A palheta foi baixada até que o nível da amostra coincidisse com a marca superior indicada na palheta e, ao final, inicia-se o ensaio.

Os ensaios foram realizados com uma velocidade de 0,1 rpm, como também utilizada por BAUER *et al.* (2007), e os pontos obtidos a cada 5 segundos. Toda vez que o reômetro era ligado, o equipamento era zerado (procedimento recomendado pelo fabricante do equipamento). Os números das palhetas utilizadas para os ensaios estão na Tabela 3.6 junto com os valores do torque máximo obtidos durante os ensaios.

Conforme o manual do fabricante (BROOKFIELD, 2012), o torque máximo gerado pela resistência da mistura a rotação da palheta deve estar entre 10 e 100% para que os resultados obtidos sejam confiáveis. Com esta restrição, não foi possível utilizar somente uma palheta para todas as misturas. Quanto maior o número da palheta, menores são o diâmetro e o comprimento da palheta e, consequentemente, a área cisalhada. Como o torque obtido é uma medida da resistência da mistura ao cisalhamento, quanto maior for essa área ou quanto mais viscosa for a mistura, maior resistência ao fluxo, gerando um maior torque. Assim, para misturas mais viscosas, deve-se utilizar palhetas com menor área para que o torque máximo não ultrapasse o limite superior de 100% e, para as misturas fluidas, deve-se utilizar as palhetas de forma que a área seja suficiente para gerar um torque que não fique abaixo do limite inferior de 10%.

Mistura	Palheta	Torque máximo (%)
Referência	V-72	15,74
EU 0,25%	V-73	14,08
EU 0,50%	V-73	42,52
EU 1,0%	V-75	48,03
PI 0,25%	V-73	11,00
PI 0,50%	V-73	28,52
PI 1,0%	V-75	47,24

Tabela 3.6 – Número das palhetas utilizadas no vane test e o torque máximo obtido.

Para o cálculo do limite de escoamento, assume-se que a superfície de cisalhamento criada pela palheta seja a de um cilindro de diâmetro igual a da palheta e que a tensão esteja uniformemente distribuída em toda a superfície (NGUYEN e BOGER, 1985). Assim, a taxa de cisalhamento e a tensão de cisalhamento foram

calculadas segundo a Equação 3.3 e Equação 3.4, respectivamente, com auxílio do valor da velocidade angular que foi obtido pela Equação 3.5.

$$\gamma = \frac{2\omega R_c^2 R_b^2}{\chi^2 [R_c^2 - R_b^2]}$$
Equação 3.3
$$\tau = \frac{TK \times YMC \times T}{10}$$
Equação 3.4
$$\omega = \frac{2\pi}{60}\Omega$$
Equação 3.5

Onde:

 γ é taxa de deformação (s⁻¹);

 R_c é o raio do bécker que contem a amostra (cm);

 R_b é o raio da palheta (cm);

 χ é o raio em que a superfície de cisalhamento ocorre que, para palheta em cruz, é igual a R_b (cm);

 ω é a velocidade angular da palheta (rad/s);

 Ω é a velocidade da palheta em rpm;

au é a tensão de cisalhamento (Pa);

TK é a constante relacionada com o modelo do reômetro que é igual a 8 para o modelo HBDV-III Ultra (BROOKFIELD, 2012);

YMC é a constante relacionada com as dimensões da palheta (Tabela 3.7);

T é o valor do torque medido pelo equipamento, em porcentagem.

Tabela 3.7 – Valores de *YMC* e dimensões das palhetas em cruz (adaptado de BROOKFIELD, 2012).

N ^º da Palheta	YMC	Comprimento (cm)	Diâmetro (cm)
V-71	0,5	6,878	3,439
V-72	2,0	4,333	2,167
V-73	10,0	2,535	1,267
V-74	100,0	1,176	0,589
V-75	40,0	1,61	0,803

3.4 Estudo da Hidratação das Pastas

3.4.1 Determinação da Cinética de Hidratação por Pulso Ultrassônico

A evolução da resistência mecânica e baixa permeabilidade dos materiais cimentícios é resultado da hidratação, a qual consiste, basicamente, em reações químicas entre a água e os compostos anidros do cimento. Conforme a reação de hidratação se desenvolve, produtos hidratados são formados e se depositam nas superfícies das partículas de cimento e nos poros. Com o tempo, estes produtos conectam-se e formam uma rede de sólidos, cujas características diferem do estado fluido inicial. Essa transição do material, de uma fase fluida para um sólido, é chamada de patamar de percolação (VITORINO, 2012).

Através do método não destrutivo de medição de pulso ultrassônico, foi possível determinar o patamar de percolação e a hidratação das pastas. Os ensaios foram realizados a 23 °C e pressão atmosférica, desde a confecção das pastas até 7 dias de idade, em um equipamento Ultrasonic Cement Analiser (UCA), da marca Chandler Engineering, modelo 4262 do Laboratório de Estruturas e Materiais (LabEst) da COPPE/UFRJ (Figura 3.24), de acordo com o PROCELAB (CAMPOS *et al.*, 2005). Este equipamento possui transdutores (fonte) que emitem pulsos ultrassônicos e medidores de tempo de trânsito que determinam a velocidade ultrassônica dos pulsos no meio (pasta).

Figura 3.24 – Equipamento UCA do LabEst.

A velocidade das ondas ultrassônicas está relacionada com as propriedades do meio em que se propaga. Para meios fluidos, como a água, ela depende do módulo volumétrico e da massa específica, além da pressão, temperatura e da concentração de íons no meio. Considerando a água pura sob pressão atmosférica e temperatura de 20 °C, considera-se que a velocidade do som na água é de 1482 m/s. Entretanto, para meios sólidos, o comportamento da velocidade ultrassônica é relativo ao módulo de elasticidade e densidade do material (TIPLER e MOSCA; 2009). Assim, é possível determinar o patamar de percolação das pastas, já que nesse momento a suspensão viscosa de partículas cimentícias deixa de ser a fase dominante para que um meio sólido constituído pelas estruturas formadas nas reações de hidratação seja a fase contínua no material. Este último é responsável pelo desenvolvimento das resistências e módulos iniciais causando um incremento significativo na velocidade das ondas ultrassônicas (VITORINO, 2012).

Na Figura 3.25 são mostrados os três estágios da hidratação identificados a partir das curvas de velocidade do pulso ultrassônico. As regiões estão identificadas como: período I, período II e período III, conforme é descrito em ROCHA (2011).

Durante o período I, a velocidade é constante e geralmente em torno de 1490 m/s, a velocidade do som na água. Isto porque a mistura neste período ainda é somente uma suspensão de partículas consideradas uniformemente dispersas e a propagação da onda se dá na fase líquida. Para as misturas em estudo, o valor da velocidade neste estágio foi em torno de 1600m/s.

Figura 3.25 - Curva típica de velocidade do pulso ultrassônico versus tempo de cura.

Após esse período de velocidade constante, a velocidade aumenta rapidamente o que corresponde ao rápido desenvolvimento dos produtos de hidratação. Ou seja, quando certa quantidade de produtos hidratados é atingida, ponto A na Figura 3.25, a percolação da fase sólida parece ocorrer e a velocidade aumenta (ZHANG *et al.*, 2009). Este estágio é identificado como período II na Figura 3.25.

No período III, o processo de hidratação chega ao estágio em que a difusão domina e a velocidade da reação diminui. Um alto grau de hidratação é alcançado e a velocidade atinge um platô. O início deste estágio é o ponto B indicado na Figura 3.25.

A determinação do patamar de percolação e do patamar de estabilização das reações de hidratação das pastas foi obtida conforme ROCHA (2011). Foram calculadas as intersecções das retas traçadas nos trechos lineares (ponto A e B) das curvas de velocidade do pulso ultrassônico x log do tempo. Além disso, as inclinações das retas 1 e 2 da Figura 3.25 também foram obtidas nos cálculos realizados.

3.4.2 Ensaio de Elevação Adiabática de Temperatura

O ensaio de elevação adiabática tem como objetivo estudar a evolução da hidratação por meio da elevação de temperatura das pastas submetidas a um sistema adiabático, ou seja, um sistema onde não haja trocas de calor entre o corpo-de-prova e o ambiente. A elevação de temperatura, sob tal condição, é devida somente às reações exotérmicas de hidratação do cimento.

Os ensaios foram realizados utilizando os calorímetros adiabáticos do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.26). Baseiam-se em calorímetros com banho térmico em água que contêm um sistema de aquecimento-resfriamento acoplado. Na medida em que o corpo-de-prova aumenta de temperatura por causa das reações de hidratação, o dispositivo eletrônico de controle do calorímetro ativa a resistência elétrica de maneira que a temperatura do banho acompanhe o aquecimento do corpo-de-prova. Assim, a temperatura da água do banho é mantida igual a do corpo-de-prova durante o ensaio, com precisão de 0,1 °C. Porém, a temperatura limite da qual o banho pode acompanhar o corpo-de-prova é de um pouco inferior a 100 °C, já que a água entra em ebulição por volta desta temperatura. O volume do corpo-de-prova utilizado foi de, aproximadamente, 1,6 litros e o ensaio é realizado até que a temperatura do corpo-de-prova estabilize.

Figura 3.26 – Calorímetros adiabáticos do Laboratório de Estruturas e Materiais da COPPE/UFRJ.

A temperatura inicial de todos os ensaios foi de 8,8 \pm 0,7 °C. Optou-se por esta temperatura, pois a quantidade de calor liberada por pastas é muito alta, podendo o corpo-de-prova chegar a uma elevação de temperatura de cerca de 90 °C, e, portanto, maior parte da curva de elevação adiabática pode ser obtida. Assim, para a produção das misturas, todos os componentes foram pesados, lacrados e colocados na sala climatizada à 4 \pm 2 °C um dia antes do início de cada ensaio. Além disso, durante o processo de produção, foi utilizada uma mistura de gelo e álcool em torno do copo do misturador para manter a pasta resfriada.

Considerando a temperatura inicial das pastas mais baixa que a temperatura ambiente, utiliza-se o sistema de resfriamento para controlar a temperatura do banho. Além disso, os calorímetros contêm agitadores que garantem a homogeneidade da temperatura do banho. A Figura 3.27 mostra, de forma esquemática, os detalhes do sistema de aquecimento e resfriamento dos calorímetros.

Figura 3.27 – Representação de um dos calorímetros adiabáticos: (a) perspectiva; (b) corte esquemático.

Por meio da curva de elevação adiabática de temperatura, é possível a determinação dos parâmetros característicos da liberação de calor provocada pela evolução da reação de hidratação e, também, a avaliação da velocidade com que o calor é liberado pelas pastas. Tal velocidade foi avaliada através das inclinações das retas traçadas nos trechos, aproximadamente, lineares das curvas de elevação de temperatura.

Os parâmetros característicos da liberação de calor são a elevação adiabática de temperatura (E_{ad}), dada pela Equação 3.6 e o coeficiente de elevação adiabática (C_a), dado pela Equação 3.7.

$$E_{ad} = T_f - T_i$$
 Equação 3.6

$$C_a = \frac{E_{ad}}{C_c}$$
 Equação 3.7

Onde:

 T_f é a temperatura final do ensaio;

- T_i é a temperatura inicial da pasta;
- C_c é o consumo de material cimentício.

3.4.3 Estudo da Hidratação por Condutividade Elétrica

Durante a hidratação do cimento, a pasta deixa de se comportar como um fluido para se tornar um sólido e, conforme as reações de hidratação acontecem, mais e mais água ligar-se-á aos produtos de hidratação tanto quimica quanto fisicamente. Com isso, a quantidade de água livre muda e, por consequência, a condutividade da pasta muda. A medição da condutividade da pasta no tempo permite que o processo de hidratação seja monitorado e uma relação entre a evolução da hidratação e condutividade da pasta seja estabelecida (BEEK, 2000).

Com o intuito de estabelecer a relação entre hidratação e condutividade, foram realizados ensaios medindo a condutividade e a temperatura da amostra através do tempo com o equipamento *ConSensor 2.0* (Figura 3.28) do Laboratório de Estruturas e Materiais da COPPE/UFRJ. Através da Figura 3.28 nota-se que o sistema é composto basicamente de um equipamento para aquisição e envio dos dados (*Data Box*), e um sensor que é posicionado no centro da amostra e, a cada ensaio, é trocado por um novo.

Figura 3.28 – Equipamento ConSensor 2.0 com um sensor conectado.

Durante o ensaio, a *data box* obtém os valores de temperatura e condutividade induzindo, através do sensor, a amostra a um campo elétrico de frequência igual a 20 MHz e os envia, via rede sem fio de *Internet*, para uma central de dados que os disponibiliza na página do *ConSensor 2.0* na *Internet*. A unidade da condutividade medida pelo sensor inserido na amostra é a mS/cm (milisiemens por centímetro) e da temperatura é °C.

Os ensaios foram realizados em um molde cilíndrico com dimensões de 100 mm de diâmetro e 200 mm de altura, conforme ilustrado na Figura 3.29. O sensor fora posicionado no centro da amostra através de barbantes e 2 pares de furos diametralmente opostos. A mistura foi preparada conforme descrito em 3.2 e vertida em 3 camadas e para cada camada foi utilizado um soquete para uniformização da superfície dando 20 batidas. Após o preenchimento do molde, este foi colocado em um banho com água para manter a temperatura constante de 23 °C durante todo o período de ensaio que foi de 7 dias (Figura 3.29).

Figura 3.29 – Representação esquemática do ensaio de condutividade: (a) Esquema de ensaio; (b) corte do corpo-de-prova utilizado.

A Figura 3.30 mostra uma curva típica de condutividade elétrica *versus* tempo. Por meio dela é possível observar que, no período inicial, o valor da condutividade aumenta levemente e encontra seu primeiro pico por volta da 1 hora de ensaio. Após este primeiro pico (1), a condutividade começa a diminuir gradualmente. Conforme as reações acontecem, os produtos de hidratação começam a bloquear os poros interconectados e a condutividade diminui, consequentemente (BEEK, 2000). Este pequeno aumento na condutividade no período inicial é atribuído pelo autor ao aumento da concentração de íons e a mobilidade dos mesmos. Os principais íons presentes nesta etapa são: Ca⁺⁺, OH⁻, SO₄⁻, Na⁺ e K⁺.

Até aproximadamente 7-8 horas, a condutividade sofre variações, mas relativamente pequenas. Os autores associam esse período ao período de indução.

Com o final deste período, um ressalto (ver ponto 2 na Figura 4.6) aparece na curva indicando o início do período de aceleração. Segundo os autores isto ocorre devido a dois fatores: a pressão osmótica de separação da camada de gel dos grãos de cimento, permitindo acesso à água e, assim, mobilidade de íons; e a transformação parcial da etringita em monossulfato. Ao final, a formação e acumulação de produtos hidratados resultam no consumo de íons e a condutividade diminui rapidamente (ABO EL-ENEIN *et al.*,1995).

Figura 3.30 – Curva típica da condutividade elétrica *versus* tempo (modificado de ABO EL-ENEIN *et al.*,1995).

3.4.4 Ensaio de Calorimetria Isotérmica

Os ensaios de calorimetria isotérmica foram realizados com auxílio do calorímetro *TAM Air* (*TA Instruments*) do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.31). O calorímetro é constituído de 8 canais independentes que estão montados juntos formando um bloco único colocado em uma câmara de ar com temperatura controlada por um sistema regulador de temperatura (PID) e termostato (Figura 3.32a). Cada canal, por sua vez, tem uma configuração gêmea na qual um lado é destinado à ampola contendo a amostra (lado A) e o outro à ampola de referência (lado B).

A aquisição do fluxo de calor, tanto para a amostra quanto para a referência, é dada através de sensores baseados no efeito de Seebeck que estão em contato com

o fundo das ampolas, conforme ilustra a Figura 3.32b. A principal via de troca de calor entre as ampolas e o meio é através do sensor. O gradiente de temperatura no sensor gera uma diferença de potencial (voltagem) proporcional ao fluxo de calor e esse diferencial é medido pelo sensor. A diferença do fluxo de calor entre a amostra e a referência inerte é monitorada todo o tempo, isto é, o gráfico obtido é igual ao fluxo de calor do lado A subtraído do obtido no lado B.

Figura 3.31 - Calorímetro *TAM Air* (*TA Instruments*) do Laboratório de Estruturas e Materiais da COPPE/UFRJ.

Figura 3.32 - Representação do calorímetro isotérmico: (a) corte esquemático; (b) detalhe de um canal do calorímetro (adaptado de TAM AIR, 2014).

A utilização de uma ampola de referência é importante para que possíveis ruídos nos dados produzidos pelo equipamento sejam reduzidos. Porém é importante também que a quantidade de água deionizada da ampola de referência tenha o mesmo calor específico que a amostra em teste. Assim, usando a equação a seguir, foi calculada a quantidade de água necessária para cada mistura (BENTZ, 2007):

	$x_{RE}^{\acute{a}g}$	ua F	
_	$x^{cim} C_p^{cim} + x^{SA} C_p^{SA} + x^{S120} C_p^{S12}$	$2^{20} + x^{\acute{a}gua} C_p^{\acute{a}gua} + x^{fibras} C_p^{celulose}$	Equação 3.8
_	Cá	igua	

Onde:

x ^{cim}	é a quantidade de cimento utilizada para produzir 5 g de mistura;
x ^{SA}	é a quantidade de sílica ativa utilizada para produzir 5 g de mistura;
<i>x</i> ^{<i>S</i>120}	é a quantidade de quartzo moído utilizada para produzir 5 g de mistura;
x ^{água}	é a quantidade de água utilizada para produzir 5 g de mistura;
x ^{fibras}	é a quantidade de fibras utilizada para produzir 5 g de mistura;
C_p^{cim}	é o calor específico do cimento que igual a 0,75 J/(g.K) (KOCABA, 2009);
C_p^{SA}	é o calor específico da sílica ativa que igual a 0,70 J/(g.K);
C_p^{S120}	é o calor específico do quartzo moído que igual a 0,83 J/(g.K);
$\mathcal{C}_p^{lpha gua}$	é o calor específico da água que igual a 4,18 J/(g.K) (KOCABA, 2009);
$C_p^{celulose}$	é o calor específico da celulose que igual a 1,55 J/(g.K).

Após a determinação da quantidade de água da referência para cada mistura, o ensaio foi preparado. A temperatura dos ensaios foi de 23 °C. Além disso, as quantidades de água para a referência foram pesadas diretamente nas ampolas com ajuda de uma balança de precisão 0,0001g. As ampolas foram fechadas e introduzidas no lado B de cada canal.

Para o preparo das ampolas com as amostras, a quantidade produzida de cada mistura foi de 20 ml. Primeiro, pesou-se os materiais pulverulentos em um saco plástico pequeno. Para o preparo das pastas fibrosas, as fibras foram dispersas conforme é descrito no item 3.2 (foram utilizadas soluções de fibras e água como se fossem 600 ml a serem preparados) e, na sequência, a quantidade de fibras necessária para a mistura foi pesada em um bécker de 5 ml a parte. A pesagem do superplastificante foi diretamente no bécker utilizado para misturar todos os materiais, adicionando em seguida a água.

Com todos os materiais já pesados, iniciou-se a mistura. Foram adicionados os materiais secos à água e ao superplastificante e a pasta foi misturada à mão em um bécker de 50 ml durante 2,5 minutos. Ao um minuto e quarenta segundos, foi dada uma pausa para a inserção das fibras (para as misturas fibrosas) de 10 segundos. Depois se pesou a quantidade de 5 g de mistura diretamente na ampola de amostra com o auxílio de uma seringa, com a precaução de não sujar as paredes laterais nem a borda da ampola. Este procedimento é feito em 6 minutos. A ampola foi, então, fechada e colocada dentro do lado A do canal, totalizando 10 minutos desde o contato dos materiais cimentícios com a água. É importante ressaltar que todos os procedimentos de pesagem acima descritos foram feitos com auxílio de uma balança de precisão 0,0001g.

Na Figura 3.33, é apresentada uma curva típica obtida através de testes de calorimetria isotérmica de uma pasta contendo somente cimento CPP – classe G. Segundo ODLER (1998), o processo de hidratação é caracterizado por quatro principais estágios que estão intrinsecamente associados com a liberação de calor pela mistura (ver Figura 3.33). São eles: (I) período de pré-indução; (II) período de indução ou dormência; (III) período de aceleração; e (IV) período de pós-aceleração ou desaceleração.

Figura 3.33 – Evolução do calor de hidratação do cimento CPP- classe G.

No período de pré-indução, há um pico exotérmico intenso (1) causado principalmente por causa da rápida dissolução e hidratação do C_3S e, também, pela hidratação do C_3A . Porém essas reações prematuras de hidratação parecem diminuir

de velocidade em poucos instantes. Para as reações relacionadas ao C₃S, as teorias mais aceitas atualmente para explicar tal fenômeno são: a hipótese da barreira metaestável e a hipótese da etapa de dissolução lenta (ambas explicadas no item 2.1.1.1). Já para as reações relacionadas ao C₃A, as reações são abrandadas devido a presença da gipsita (CaSO₄). Este período onde a taxa de hidratação é mínima é o período de dormência ou indução. No gráfico, corresponde ao único vale da curva (2).

Depois do período de dormência, um segundo pico exotérmico (3) aparece. Isto ocorre principalmente devido a nucleação e crescimento do C-S-H (hidratação do C₃S) e formação da portlandita (CH) (BULLARD *et al.*, 2011). Este ramo ascendente logo após o período de dormência é chamado de período de aceleração. Em seguida desse pico, ocorre, para alguns cimentos, um ressalto ou pequeno pico (4), o qual é devido provavelmente a formação de AF_f. Mais adiante pode haver também um segundo ressalto o qual estaria relacionado à conversão de AF_f para AF_m.

A partir do principal pico exotérmico (3), as reações de hidratação começam a desacelerar e o processo que predomina nesta fase é a difusão. Esta fase é denominada período de pós-aceleração ou desaceleração.

3.4.5 Resistência à Compressão

A hidratação das pastas também foi estudada utilizando os dados obtidos a partir dos ensaios de compressão uniaxial (descrito no item 3.5.2.1). Porém, com intuito de aumentar a quantidade de pontos da curva de grau de hidratação *versus* tempo, foram realizados ensaios de resistência à compressão uniaxial adicionais àqueles citados no item 3.5.2.1. Estes ensaios foram realizados no equipamento *Shimadzu*® com célula de carga com capacidade de 1000 kN do Laboratório de Estruturas e Materiais da COPPE/UFRJ. A velocidade adotada foi de 0,3 mm/min e só foi aquisitada a carga máxima, a carga de ruptura dos corpos-de-prova. Utilizaram-se corpos-de-prova cilíndricos de 50 mm de diâmetro por 100 mm de altura nas idades de 1, 2, 4 e 6 dias.

O grau de hidratação pode ser determinado através dos valores de resistência à compressão (f_c) por meio da Equação 3.9 (TORRENTI, 1992).

$$\xi(t) = \xi_0 + \frac{f_c}{f_{c,\infty}} \cdot (1 - \xi_0) \text{ para } \xi > \xi_0$$

Equação 3.9
$$f_c(t) = 0 \text{ para } \xi \le \xi_0$$

Onde:

 $f_{c,\infty}$ é a resistência do material para uma hidratação teórica completa; ξ_0 é o parâmetro que representa o limiar da percolação, isto é, o início do

3.5 Caracterização das Pastas no Estado Endurecido 3.5.1 Propriedades Físicas

3.5.1.1 Estabilidade

aparecimento de resistência do material.

A segregação de sólidos das pastas foi avaliada conforme o procedimento descrito no PROCELAB (CAMPOS *et al.*, 2005) para o ensaio de estabilidade. Após o preparo das misturas conforme o item 3.3, estas foram vertidas em cilindros de 203 milímetros de comprimento e diâmetro interno de 25 milímetros. Em seguida, os cilindros foram inseridos em banho térmico a 27 °C. Depois de 24 horas, os corpos-de-prova foram desmoldados e cortados em quatro partes aproximadamente iguais. As seções foram identificadas da seguinte forma: T (topo), I1 (intermediária 1), I2 (intermediária 2) e F (fundo). Em seguida, as amostras ficaram em repouso imersas em água por pelo menos 30 minutos. A Figura 3.34 mostra detalhes do ensaio.

Ao final, foram determinadas as massas das seções na água, sem o contato das mesmas nas paredes ou no fundo do béquer, e no ar, apoiadas no fundo. O cálculo da massa específica de cada seção foi realizado através da Equação 3.10.

$$ME = \frac{M_{ar}}{M_{\acute{a}gua}}$$
 Equação 3.10

Onde:

ME é a massa específica (g/cm³);

 M_{ar} é a massa da seção no ar;

 $M_{\dot{a}gua}$ é a massa da seção na água.

Figura 3.34 - Detalhes do ensaio de estabilidade: (a) Tubos decantadores preenchidos; (b) Moldes no banho térmico; (c) Desmolde dos corpos-de-prova; (d) Marcação para o corte.

As misturas foram consideradas estáveis quando a maior diferença de massa específica entre as seções topo e fundo ($\Delta \rho$) seja menor ou igual a 0,06 g/cm³ (0,5 lb/gal) e se o rebaixamento do topo da pasta for inferior a 5 mm. Caso contrário, as pastas eram consideradas instáveis e deveriam ser reformuladas.

3.5.2 Propriedades Mecânicas

3.5.2.1 Comportamento sob Compressão Uniaxial

Os ensaios de resistência à compressão uniaxial foram realizados no equipamento *Wykeham Farrance*® com célula de carga com capacidade de 200 kN do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.35). A velocidade do ensaio foi de 0,01 mm/min. Utilizaram-se corpos-de-prova cilíndricos de 50 mm de diâmetro por 100 mm de altura nas idades de 3, 7, 28, 90 e 180 dias. Os deslocamentos axiais foram medidos por dois transdutores elétricos fixados na zona central do corpo-de-prova, e, para a obtenção do coeficiente de Poisson aos 28 dias de idade, os deslocamentos laterais foram medidos por dois por dois extensômetros elétricos

do tipo PA-06-1000BA-120L, da *Excel Sensores*, colados diametralmente opostos à meia altura do corpo-de-prova.

Figura 3.35 – Configuração do ensaio de compressão uniaxial.

No dia anterior a cada ensaio, os corpos-de-prova eram retirados da câmara úmida e faceados em torno mecânico para uniformização das superfícies, tanto do topo quanto da base. Isto evita a ruptura indevida dos cilindros causada por concentrações de tensões em algum ponto das superfícies. Após faceamento, os corpos-de-prova foram colocados em uma sala com 22 \pm 1 °C até o momento do ensaio.

Através da curva tensão *x* deformação, obtida no ensaio, foram calculados o módulo de elasticidade secante e o coeficiente de Poisson conforme a Equação 3.11 e a Equação 3.12 presentes na norma ASTM C 469 (2010).

$$E_c = \frac{\sigma_2 - \sigma_1}{\varepsilon_2 - \varepsilon_1}$$
 Equação 3.11

$$\nu = \frac{\varepsilon_{t2} - \varepsilon_{t1}}{\varepsilon_2 - \varepsilon_1}$$
 Equação 3.12

Onde:

 E_c é o módulo de elasticidade (GPa);

 σ_2 é a tensão a 40% da tensão máxima (MPa);

 $\sigma_1\,$ é a tensão correspondente à deformação $\varepsilon_1\,$ (MPa);

 ε_2 é a deformação longitudinal correspondente à tensão σ_2 (µ ϵ);

 $\mathcal{E}_1~$ é deformação longitudinal de valor igual à 5 x 10^{-5} $\mu\epsilon;$

 ν é o coeficiente de Poisson;

 ε_{t2} é a deformação transversal produzida por σ_2 (µ ϵ);

 ε_{t1} é a deformação transversal produzida por σ_1 (µ ϵ).

3.5.2.2 Comportamento sob Esforços de Compressão Triaxiais

Os ensaios de resistência à compressão triaxial das pastas foram realizados no equipamento *Wykeham Farrance*® com célula de carga de capacidade igual a 200 kN e célula de confinamento com capacidade de 14 MPa do Laboratório de Estruturas e Materiais da COPPE/UFRJ (Figura 3.36a e Figura 3.36b). Adotou-se uma velocidade de 0,01 mm/min, utilizando pressões de confinamento de zero, 4,14 e 8,27 MPa. As pressões de confinamento foram aplicadas gradativamente em um intervalo de tempo de 10 min e logo em seguida aplica-se a tensão σ_1 .

O ensaio foi realizado em corpos-de-prova cilíndricos com dimensões de 50 mm de diâmetro e 100 mm de altura com idade de 28 dias. Da mesma maneira que para os ensaios de compressão uniaxial, no dia anterior a cada ensaio, os corpos-de-prova eram retirados da câmara úmida e faceados em torno mecânico para uniformização das superfícies, tanto do topo quanto da base. Durante a preparação do ensaio, o corpo-de-prova é envolvido por uma membrana de látex visando evitar o contato do óleo mineral da célula de confinamento com o mesmo (Figura 3.36c). Os deslocamentos axiais foram obtidos através de dois extensômetros elétricos do tipo PA-06-1000BA-120L, da *Excel Sensores*, colados diametralmente opostos à meia altura do corpo-de-prova (Figura 3.36d).

Além da tensão axial (σ_1) aplicada no corpo-de-prova, como no ensaio uniaxial, no ensaio triaxial há tensões confinantes, $\sigma_2 e \sigma_3$. O aumento da tensão axial com as tensões confinantes mantidas constantes produz um incremento da tensão desviadora (σ_1 – σ_3) até a ruptura do corpo-de-prova (ROCHA e AZEVEDO, 2007). Assim, a partir deste ensaio, é possível determinar o ângulo de atrito interno (ϕ) e a coesão (S₀) das pastas utilizando o Critério de Ruptura de Mohr-Coulomb.

(b)

(c)

(d)

Figura 3.36 – Ensaio de compressão triaxial: (a) Equipamento Wykeham Farrance com a célula de confinamento; (b) Célula de confinamento; (c) Corpo-de-prova posicionado na célula de confinamento; (d) Detalhe do posicionamento dos extensômetros.

Na Figura 3.37 estão representados os círculos de Mohr, ou seja, as combinações críticas das tensões principais obtidas durante um ensaio de compressão triaxial. A reta que tangencia todos os círculos de Mohr é chamada de envoltória de ruptura, isto é, é o limite máximo das tensões cisalhantes para qualquer estado de tensões (ROCHA e AZEVEDO, 2007). A Equação 3.13 descreve a envoltória de ruptura, o critério de Mohr-Coulomb.

$$\tau = S_0 + \tan(\phi) \times \sigma$$

Onde:

au é a tensão cisalhante (MPa);

 S_0 é a coesão do material (ponto em que a envoltória corta o eixo y) (MPa);

 σ é a tensão normal (MPa);

 ϕ é o ângulo de atrito interno.

A equação da envoltória de Mohr pode ser deduzida e colocada em função das tensões principais, conforme mostra a Equação 3.14.

$$\sigma_1 = 2S_0 \left(\frac{\cos \phi}{1 - \sin \phi} \right) + \sigma_3 \left(\frac{1 + \sin \phi}{1 - \sin \phi} \right)$$
 Equação 3.14

Onde:

 σ_1 é a tensão principal maior (MPa);

 σ_3 é a tensão principal menor (MPa).

A partir dos dados obtidos no ensaio, plota-se o critério de Mohr-Columb no espaço $\sigma_1 X \sigma_3$, conforme a Figura 3.38, para determinação dos valores de resistência à compressão uniaxial (C_o) e α e, posteriormente, S₀ e ϕ . A Equação 3.15 e a Equação 3.16 permitem o cálculo do ângulo de atrito interno e da coesão das pastas.

Onde:

Figura 3.38 - Critério de Mohr-Coulomb: (a) no espaço $\tau \times \sigma$; (b) no espaço $\sigma_1 \times \sigma_3$ (ROCHA e AZEVEDO, 2007).

3.5.2.3 Comportamento sob Esforços de Flexão

Os ensaios de resistência à tração sob esforços de flexão foram realizados em equipamento *Shimadzu*® modelo AG-X 100 kN, conforme ilustra a Figura 3.39. Todos os corpos-de-prova ensaiados tinham forma prismática com dimensões de 50 x 50 x 228 mm e 28 dias de idade. A velocidade adotada foi de 0,03 mm/min e as aquisições da carga e da flecha no meio do vão foram obtidas por meio do sensor interno do equipamento e um transdutor de deslocamento linear (LVDT), respectivamente. Os pontos de carga distavam 60 mm e o vão entre apoios distava 180 mm.

Figura 3.39 - Configuração dos ensaios de resistência à tração na flexão.

A tensão de primeira fissura, assim como a tensão de ruptura foram calculadas a partir da Equação 3.17:

$$f_f = \frac{F_r \cdot L}{b \cdot h^2}$$
 Equação 3.17

Onde:

 f_f é a resistência à tração na flexão (MPa);

- F_r é a carga de primeira fissura do corpo-de-prova (N);
- L é a dimensão do vão livre (180 mm);
- *b* é a largura da seção do corpo-de-prova (mm);
- *h* é a altura da seção do corpo-de-prova (mm).

A largura e a altura de cada corpo-de-prova foram medidas com o auxílio de um paquímetro digital, de marca *Mitutoyo*® com precisão de 0,01 mm. As medidas foram feitas nos 4 pontos de contato do equipamento com o corpo-de-prova. A média aritmética destas 4 medidas foram utilizadas para a determinação da tensão e da tenacidade.

• *Índice de Tenacidade*

Para materiais compósitos, além da determinação da resistência sob flexão, é importante o cálculo de outra propriedade: a tenacidade. A partir da curva carga versus deslocamento é possível obter a tenacidade que é definida como a quantidade de energia que o material é capaz de absorver até sua ruptura.

Uma das formas de caracterizar a tenacidade de um compósito é através de índices relacionados à capacidade de absorção de energia. Existem várias normas que podem ser utilizadas para calcular o índice de tenacidade. No entanto, a maioria das normas depende do valor de deslocamento de primeira fissura do compósito, com exceção da norma japonesa JCSE-SF4 (1983) e, devido ao valor de deslocamento de primeira fissura ter apresentado um desvio padrão alto, utilizou-se neste trabalho a norma japonesa para a obtenção do índice de tenacidade.

Essa norma determina o índice de tenacidade a partir da tenacidade (T) do compósito até uma deflexão limite, que é dada por L/n, onde n=150. Neste estudo, os corpos de prova prismáticos possuem um L igual a 180 mm, que é a distância entre os apoios inferiores do equipamento. Sendo assim, a deflexão limite considerada para o cálculo da tenacidade é de 1,2 mm. A tenacidade (T) é dada pela área da região abaixo da curva carga versus deslocamento (deflexão) até a deflexão limite considerada. A área abaixo da curva foi calculada com o auxílio do *software OriginPro® 8.* Assim, o fator de tenacidade é determinado pela Equação 3.18.

$$FT = \frac{T}{\delta} \cdot \frac{L}{b \cdot h^2}$$
 Equação 3.18

Onde:

FT é o índice de tenacidade na flexão (kgf/cm² ou MPa);

- T é a tenacidade na flexão (kgf.cm ou J);
- δ é a deflexão equivalente a L/n (cm ou mm);
- *L* é a dimensão do vão livre (180 mm);
- *b* é a largura da seção do corpo-de-prova (mm);
- h é a altura da seção do corpo-de-prova (mm).

3.6 Análises Estatísticas dos Ensaios de Caracterização de Pastas

As Análises de Variância (ANOVA) foram empregadas nas análises estatísticas dos resultados obtidos dos ensaios de caracterização das pastas. O *software Origin Pro*® *8.5* foi empregado na realização do estudo da variância dos resultados, os quais foram computados ao nível de significância de 10 %, e a *posteriori,* o método de comparação de *Tukey* foi empregado.

4. APRESENTAÇÕES E ANÁLISE DE RESULTADOS

Nesse capítulo serão apresentados e discutidos os resultados obtidos a partir dos diversos ensaios experimentais realizados nos compósitos e as características de cada material utilizado em sua produção.

4.1 Propriedades das Pastas no Estado Fresco 4.1.1 Água Livre e Estabilidade

Os ensaios de estabilidade das misturas foram realizados em três corpos-deprova por mistura. Os resultados médios obtidos para o rebaixamento, as massas específicas de topo e fundo e a diferença entre as massas específicas de fundo e topo, bem como seus respectivos coeficientes de variação, são apresentados na Tabela 4.1.

Mistura	Rebaixamento (mm)	ρ _{topo} (g/cm³) - CV(%)	ρ _{fundo} (g/cm³) - CV(%)	Δρ (g/cm³)
REF	0	1,98 - 0,1	1,98 - 0,0	0,00
EU 0,25%	0	1,98 - 0,1	1,98 - 0,3	0,01
EU 0,50%	0	1,95 - 0,1	1,95 - 0,5	0,00
EU 1,0%	0	1,92 - 1,0	1,93 - 1,2	0,02
PI 0,25%	0	1,97 - 0,9	1,97 - 0,1	0,00
PI 0,50%	0	1,96 - 0,2	1,97 - 0,5	0,01
PI 1,0%	0	1,96 - 0,3	1,96 - 0,7	0,01

Tabela 4.1 – Resultados dos ensaios de estabilidade.

Analisando-se os resultados apresentados na Tabela 4.1, pode-se constatar que todas as pastas apresentaram massas específicas de fundo e topo praticamente iguais (diferença inferior a 0,9%). Do mesmo modo, não foram observados rebaixamentos de topo em nenhuma das misturas ensaiadas. Nos ensaios de água livre ambiente, não foi notada água sobrenadante para nenhuma das misturas ensaiadas.

Com o aumento do teor de polpa ocorreu uma pequena redução na massa especifica da mistura de referência. Essa redução ocorre porque a polpa é mais leve que os demais componentes da mistura, além de existir a possibilidade de ocorrência de ar aprisionado. No entanto a diferença é inferior a 3%.

4.1.2 Reologia

4.1.2.1 Índice de Consistência - Espalhamento

Na Tabela 4.2 são apresentados os valores de espalhamento para as misturas, obtidos através do ensaio da mesa de consistência padrão. A Figura 4.1 mostra o aspecto das mesmas durante o ensaio. A análise estatística dos resultados é apresentada no Anexo B.

(a)

Figura 4.1 – Aspecto da consistência das misturas após o ensaio da mesa de consistência padrão: (a) referência; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%; (e) PI 0,25%; (f) PI 0,50% e (g) PI 1,0%.

Mistura	Espalhamento (mm) – CV (%)
Referência	388 – 2,0
EU 0,25%	307 – 0,9
EU 0,50%	273 – 1,1
EU 1,0%	228 – 1,3
PI 0,25%	340 - 0,0
PI 0,50%	308 – 6,1
PI 1,0%	260 – 1,9

Tabela 4.2 – Resultados de espalhamento.

A adição de fibras reduziu a trabalhabilidade quando comparadas com a mistura de referência. Observando os traços com fibras de eucalipto, a adição de 0,25%, 0,50% e 1,0% de fibras reduziu o espalhamento em cerca de 21%, 30% e 41%, respectivamente. A partir das fotografias das três misturas, apresentadas na Figura 4.1, é possível observar, no entanto, que não ocorre segregação nem formação de grumos.

Para os traços contendo fibras de pinho, a mesma tendência de redução no espalhamento aconteceu, sendo que, para os teores de 0,25%, 0,50% e 1,0% de fibras, o espalhamento foi reduzido em cerca de 12%, 21% e 33%, respectivamente.

Quando comparados dois traços com mesmo teor de fibras, observa-se que a redução no espalhamento foi maior para as misturas com fibras de eucalipto. Isto é devido, provavelmente, ao fato de que as fibras de eucalipto são muito mais finas e mais curtas que as fibras de pinho e, assim, tem-se mais fibras por volume de mistura acarretando uma maior área de contato e maior quantidade de água adsorvida na superfície do reforço.

Apesar do espalhamento das misturas fibrosas serem menores que o da matriz, em nenhuma das misturas foi observado a formação de grumos e nem exsudação de água aparente (ver Figura 4.1). As partes (d) e (g) da Figura 4.1 mostram, no entanto, que a aparência das misturas PI 1,0% e EU 1,0%, mostram-se mais -espessas", -rugosas".

4.1.2.2 Tensão de Escoamento – Vane test

Os resultados de tensão de escoamento obtidos pelo método *vane test* estão apresentados na Tabela 4.3, assim como o valor do torque máximo obtido para cada mistura. Cada valor apresentado refere-se apenas ao resultado de um ensaio por mistura. A rotação da palheta é definida como a rotação que a palheta realizou até que

a estrutura se rompesse, ou seja, é o valor obtido pela multiplicação da velocidade de rotação, no caso 0,1 rpm (0,36°/s), pelo tempo até a ruptura (em s). Através dos valores de torque obtidos durante os ensaios, foram obtidos gráficos de tensão de cisalhamento *versus* tempo, onde o limite de escoamento foi considerado como o valor máximo da tensão de cisalhamento.

Mistura	Torque máximo (%)	Limite de Escoamento (kPa)	Tempo (s)	Rotação da Palheta (°)
Referência	15,74	0,025	45	0,45
EU 0,25%	14,08	0,113	125	1,25
EU 0,50%	42,52	0,340	155	1,55
EU 1,0%	48,03	1,537	160	1,60
PI 0,25%	11,00	0,088	115	1,15
PI 0,50%	28,52	0,228	115	1,15
PI 1,0%	47,24	1,512	195	1,95

Tabela 4.3 – Limite de escoamento para as misturas em estudo.

A Figura 4.2 mostra a variação do limite de escoamento com a fração volumétrica, tanto de eucalipto quanto de pinho, e, a Figura 4.3 e a Figura 4.4 mostram as curvas tensão de cisalhamento *versus* tempo para as misturas estudadas.

Figura 4.2 - Evolução do limite de escoamento versus fração volumétrica de fibra.

Figura 4.3 - Curvas tensão de cisalhamento versus tempo para as misturas contendo fibras de eucalipto.

Figura 4.4 - Curvas tensão de cisalhamento versus tempo para as misturas contendo fibras de pinho.

O limite de escoamento aumentou com a adição de fibras e os resultados mostrados na Figura 4.2 indicam que este aumento é não-linear. Até a fração de 0,50%, observa-se um aumento do limite de escoamento de 4,5 vezes maior e 13,5 vezes maior em relação à referência para EU 0,25% e EU 0,50%, respectivamente. Para as fibras de pinho, estes aumentos foram de 3,5 vezes para PI 0,25% e 9 vezes para PI 0,50%. Porém, para valores mais altos, ocorre um aumento do limite de

escoamento mais expressivo (em torno de 60 vezes maior que a referência). Esse ponto também foi observado por KACI *et al.* (2011) nos seus estudos de matrizes reforçadas com fibras de celulose. Segundo eles, a existência desse ponto crítico pode ser explicada considerando que, a partir deste ponto, existe a formação de grumos ou novelos de fibras (mantendo-se constante o traço da matriz) o que geraria um efeito -travamento" na mistura e isto explicaria a resistência inicial maior ao fluxo.

No presente estudo, para as misturas reforçadas com 1,0% de polpa, ao final do ensaio observou-se uma aglomeração de pasta mais fibras nas extremidades da palheta, indicando que a palheta fez com que as fibras se depositassem nas extremidades da palheta durante o ensaio, o que pode ter gerado um torque significativamente elevado.

Os resultados mostram que um aumento na fração volumétrica de fibras, para ambos os tipos de fibras, resultou numa mistura com maior resistência inicial ao fluxo, isto é, com maior limite de escoamento. Além disso, quanto maior o teor de fibras, maior é o tempo necessário para que a estrutura se rompa. Assim, observando-se os dados da Tabela 4.3 para a mistura de referência, nota-se que a palheta gira 0,45° até que a estrutura se rompa. Já para as misturas EU 1,0% e PI 1,0%, a palheta chega a girar 1,6° e 1,95°, respectivamente. Neste parâmetro, os resultados mostram-se diferentes daqueles obtidos no ensaio de espalhamento. Observou-se uma maior influência do comprimento das fibras do que a quantidade de fibras para o ângulo da rotação. A resistência ao movimento pode ser relacionada com o atrito entre as partículas da pasta que estão na superfície de cisalhamento e quando se adiciona partículas longilíneas, como as fibras, a extremidade da palheta tem mais dificuldade para arrastá-la ou empurrá-las para fora da área de cisalhamento do que as outras partículas da pasta (que são mais esféricas que o reforço). Além disso, com a adição de fibras, parte da água é absorvida pelas fibras e assim, com menos -água livre", aumenta-se o atrito entre as partículas, aumentando o limite de escoamento.

Comparando misturas com mesmo teor de fibra, porém com diferentes tipos de fibra, observa-se que as misturas reforçadas com fibras de pinho apresentaram menor limite de escoamento que aquelas contendo fibras de eucalipto, exceto para as misturas com 1,0% de fibras (se mostraram praticamente iguais). Tais tendências foram observadas também durante os ensaios de espalhamento (item 4.1.2.1).

Quanto à última parte das curvas, ou seja, após o ponto de máximo torque, a inclinação da curva e o nível que ela atinge assintoticamente não podem ser

interpretados, uma vez que não se pode definir o quão ampla é a camada cisalhada e, portanto, quanto da amostra em seu recipiente está realmente reagindo à tensão aplicada (SCHRAMM, 2006).

4.2 Estudo da Hidratação das Pastas 4.2.1 Determinação da Cinética de Hidratação por Pulso Ultrassônico

A Figura 4.5 apresenta as curvas de velocidade do pulso ultrassônico *versus* tempo em escala logarítmica para as misturas em estudo. As misturas foram curadas a uma temperatura de 23 °C e pressão atmosférica. Na Tabela 4.4 são mostrados os valores do tempo correspondente ao ponto A (indicado na Figura 3.25) e para as inclinações das retas 1 e 2 para as misturas em estudo. Cada valor apresentado refere-se apenas ao resultado de um ensaio por mistura. Não foi possível identificar o ponto B (indicado na Figura 3.25) nas curvas, pois o patamar final não foi alcançado durante os sete dias de ensaio.

Miaturaa	Donto A (min)	Inclinação		
wisturas		Reta 1	Reta 2	
REF	205	1714,00	964,51	
EU 0,25%	197	1641,00	979,94	
EU 0,50%	224	1677,00	980,48	
EU 1,0%	198	1717,00	939,94	
PI 0,25%	230	1753,00	1030,00	
PI 0,50%	227	1831,00	1060,00	
PI 1,0%	190	1523,00	853,12	

Tabela 4.4 – Ponto A e a inclinação das retas obtidas durante a regressão linear na região intermediária das reações de hidratação.

Figura 4.5 – Curvas velocidade do pulso ultrassônico versus tempo de cura em escala logarítmica: **(a)** misturas contendo fibras de eucalipto e **(b)** misturas contendo fibras de pinho.

Observando-se os resultados nota-se que a presença das polpas de eucalipto e pinho não alterou significativamente o tempo correspondente ao ponto A, identificado como patamar de percolação. Por exemplo, enquanto que para a matriz esse tempo foi de 205 min, para as misturas com polpas esse valor variou de 190 a 230 min. Observe que a velocidade do pulso ultrassônico permaneceu constante até esse tempo. Após esse ponto, iniciou-se a região II (aceleração), que se caracterizou por uma dupla inclinação. Até cerca de 15 horas, já na região II, a inclinação da reta 1 é maior para todas as misturas estudadas e, para mistura de referência seu valor foi de 1714,0, enquanto para as misturas contendo polpas a inclinação variou 1641,0 a 1831,0 (exceto para a mistura PI 1,0% que foi de 1523). Depois das 15 horas, é possível observar uma redução na inclinação da curva, sendo caracterizado pela inclinação da reta 2. Essa dupla inclinação pode estar associada à cinética de formação dos diversos produtos hidratação incluindo o CSH pozolânico. Como a duração do ensaio foi de sete dias, não foi possível obter a região III (pós-aceleração) por inteiro. No entanto, observando-se o final da região II da curva (a partir de 80h de ensaio) e o inicio da região III, nota-se que a intensidade da velocidade do pulso ultrassônico diminui com o aumento do teor das polpas em estudo. Nota-se, assim, uma tendência das polpas de reduzirem um pouco o valor máximo da velocidade do pulso ultrassônico.

4.2.2 Estudo da Hidratação por Condutividade Elétrica

Na Figura 4.6 são apresentadas as curvas de condutividade elétrica *versus* tempo para as misturas REF, EU 0,25%, EU 0,50%, EU 1,0% e PI 1,0%. As medidas foram inicializadas 15 minutos depois do contato com do cimento com a água, e este é o tempo zero do ensaio. Os tempos em que acontecem os pontos 1 e 2 para as misturas são apresentados na Tabela 4.5.

Figura 4.6 – Condutividade *versus* tempo: (a) misturas contendo fibras de eucalipto e (b) misturas contendo fibras de pinho

Misturas	Ponto 1 (h)	Ponto 2 (h)
REF	0,7	6,6
EU 0,25%	0,7	7,1
EU 0,50%	0,7	7,1
EU 1,0%	0,7	7,8
PI 1,0%	0,8	7,3

Tabela 4.5 – Tempo do ponto 1 e ponto 2 para as misturas em estudo.

Os resultados obtidos indicam que o tempo correspondente ao ponto 1 variou de 0,7-0,8h e não foi afetado pela presença das polpas de pinho e eucalipto nas frações volumétricas utilizadas. No entanto, as polpas afetaram o tempo correspondente ao período de indução. Por exemplo, para o teor de polpas de 1% o tempo correspondente ao ponto 2 foi de 7,3-7,8h enquanto que para a matriz de referencia esse tempo foi de 6,6h. Isso indica que as reações de hidratação iniciaram mais lentamente nas misturas fibrosas, ou seja, um retardo ocorre com a presença das polpas. Observando-se o trecho da curva correspondente a aceleração (apos o ponto também nota-se a dupla inclinação já observada nas curvas de velocidade de pulso ultrassônico. A partir das curvas de condutividade x tempo verifica-se que a condutividade das misturas com polpa é um pouco maior do que a da mistura de referencia tanto no trecho correspondente a aceleração quanto ao pós-aceleração. Este aumento pode estar relacionado a dois fatores. O primeiro é o fato do aumento de condutividade indicar que há menos água guimicamente ligada e, assim, menos produtos hidratados formados. O segundo fator é o de que a condutividade também é dependente da interconectividade da estrutura de poros para poder acontecer e, assim, devido à presença de fibras porosas, ocorre uma manutenção desta rede permeável, aumentando a condutividade.

Na Figura 4.7, apresenta-se a relação entre o grau de hidratação calculado utilizando-se os resultados dos ensaios de condutividade e da velocidade do pulso ultrassônico (ξ_{cond} e ξ_{vel} , respectivamente). É importante ressaltar que os dois ensaios foram realizados sob as mesmas condições (23 °C) e que os graus de hidratação calculados foram os máximos possíveis com os dados obtidos nos ensaios, ou seja, somente até sete dias, e, sendo assim, não representam um grau de hidratação máximo ($\xi(\infty)$).

Através da Figura 4.7, nota-se uma boa correlação dos resultados obtidos pelas diferentes técnicas. Após o período de indução, as reações de hidratação acontecem e o pulso ultrassônico se propaga preferencialmente pelos produtos hidratados e, durante o mesmo período, a condutividade expressa a quantidade de água ainda não combinada. As medições que são -opostas" (enquanto um valor aumenta, o outro diminui), mostraram-se bastante consistentes e apresentaram boa correlação quando transformadas em grau de hidratação.

Figura 4.7 – Relação entre condutividade elétrica e velocidade do pulso ultrassônico.

4.2.3 Ensaio de Elevação Adiabática de Temperatura

A Figura 4.8 apresenta as curvas típicas de evolução da temperatura das misturas de referência, EU 0,50%, EU 1,0%, PI 0,50% e PI 1,0% sob condições adiabáticas.

Figura 4.8 – Elevação adiabática da temperatura na escala normal: (a) misturas contendo eucalipto e (b) misturas contendo fibras de pinho.

A temperatura inicial das misturas foi de cerca $8,8 \pm 0,7$ °C. Embora se pretendesse conduzir o ensaio até a temperatura limite do equipamento (cerca de 100 °C), observou-se que o controle do mesmo para temperaturas superiores a cerca de 93 °C ficava bastante difícil e, portanto, os ensaios eram encerrados quando essa temperatura era atingida. Assim, a elevação máxima de temperatura do equipamento, para as condições de ensaio estudada, foi de cerca de 83-85 °C.

Por causa dessa limitação, para obtenção da temperatura máxima as curvas obtidas experimentalmente foram extrapoladas matematicamente. A Figura 4.9 e a Figura 4.10 mostram os trechos das curvas que foram extrapolados, as equações que descrevem tais trechos e seus coeficientes de determinação (R²). Os dados experimentais utilizados para obter a curva extrapolada foram os pontos a partir das 30 horas de ensaio. Os resultados de elevação adiabática e o coeficiente de elevação adiabática estão sumarizados na Tabela 4.6. O valor de elevação adiabática foi obtido a partir do cálculo do limite das funções obtidas para a extrapolação.

Observando-se as curvas experimentais apresentadas, nota-se que até cerca de 9 horas de ensaio, as misturas apresentam um período de baixa taxa de liberação de calor (período de indução) e que a partir daí ocorreria um aumento da intensidade de liberação de calor (período de aceleração). Também nesse ensaio se observou a dupla inclinação do trecho correspondente ao período de aceleração. Observando-se a Figura 4.8, nota-se a mudança na inclinação da curva a partir das 20 e 25 horas de ensaio. Este comportamento deve estar relacionado, como já observado também na

Figura 4.5 e na Figura 4.6, às reações de hidratação dos diferentes compostos do cimento e da reação pozolânica do hidróxido de cálcio com a sílica ativa presente nas misturas. Esta dupla inclinação na curva foi observada também nos resultados dos métodos de velocidade de pulso ultrassônico e condutividade elétrica. Após 40 horas de ensaio iniciava-se o período pós-aceleração e as reações ficavam mais lentas.

A partir das curvas de elevação adiabática de temperatura (ver Figura 4.8), vêse que a liberação de calor das misturas fibrosas foi mais lenta que a da referência, e que as diferenças entre as curvas ficam mais visíveis depois das 24 horas de ensaio. Por exemplo, a mistura de referência elevou a temperatura em 58,2 °C em 30 horas, enquanto que as misturas EU 0,50% e EU 1,0% levaram 31,1 e 31,4 horas, respectivamente, para alcançarem essa elevação de temperatura, ou seja, há um retardamento conforme o teor de fibras aumenta. As misturas PI 0,50% e PI 1,0% só atingiram a elevação adiabática de 58,2 °C depois de 31,4 e 32,0 horas, respectivamente.

A partir de 40 horas de ensaio uma separação mais clara é observada nas curvas e nota-se que a adição das polpas conduz a uma redução na elevação adiabática máxima. Com base nos valores extrapolados apresentados na Tabela 4.6. nota-se que com a adição das polpas, obteve-se redução da elevação adiabática de 1,3 °C e 5,1 °C para as misturas EU 0,50% e EU 1,0%, e de 2,4 °C e 10,7 °C para as misturas PI 0,50% e PI 1,0%. Uma redução da elevação adiabática de cerca de 0,5 °C (misturas com 0,50% de polpas) e 1 °C (misturas com 1,0% de polpa) já era esperada, uma vez que ocorre uma redução no volume de pasta/m³ quando a fibra é incluída na mistura. Porém como a redução observada foi maior, conclui-se que as misturas fibrosas formam um volume um pouco menor de produtos hidratados. Os coeficientes de elevação adiabática variaram de 0,011 a 0,012 °C.m³/kg de material cimentício (cimento+sílica ativa).

Comparando os resultados para as misturas contendo mesmo teor de fibras e tipos de fibra diferente, observa-se que as fibras de pinho causaram uma maior diminuição do calor total liberado que as fibras de eucalipto. Isso se deve ao fato das fibras de pinho mais hemicelulose, lignina e extrativo que as fibras de eucalipto.

83

Fabela 4.6 - Resultados d	los testes d	le elevação	adiabática de	temperatura	para as misturas
---------------------------	--------------	-------------	---------------	-------------	------------------

Características	Misturas				
	REF	EU 0,50%	EU 1,0%	PI 0,50%	PI 1,0%
Elevação adiabática de temperatura (°C)	95,96	94,70	90,86	93,59	85,27
Coeficiente de elevação adiabática (°C.m³/kg)	0,12	0,12	0,12	0,12	0,11

Figura 4.9 – Curvas de elevação adiabática com o final obtido através de regressão não linear para as misturas contendo fibras de eucalipto: (a) REF, (b) EU 0,50% e (c) EU 1,0%.

Figura 4.10 – Curvas de elevação adiabática com o final obtido através de regressão não linear para as misturas contendo fibras de pinho: (a) REF, (b) PI 0,50% e (c) PI 1,0%.

4.2.4 Ensaio de Calorimetria Isotérmica

Na Figura 4.11 são apresentadas as curvas de fluxo de calor obtidas no ensaio de calorimetria isotérmica a 23 °C para as misturas reforçadas com 0,50% e 1,0% de fibras de eucalipto e de pinho, e a mistura de referência.

A partir da Figura 4.11, nota-se que, durante o período de pré-indução, tanto as fibras de eucalipto quanto de pinho, não alteraram o comportamento da mistura. Entretanto, a adição de fibras gerou um pequeno aumento no período de dormência tanto quanto um aumento no tempo em que o pico principal (3) das reações de hidratação é observado. As inclinações das curvas durante o período de aceleração foram praticamente iguais o que indica que o período de aceleração foi deslocado para a direita com o uso das fibras. Comparando os picos da hidratação de cada curva, é possível observar que 0,50% e 1,0% de fibras de eucalipto retardou a hidratação em aproximadamente 30 e 45 minutos quando comparado com a referência. Algo similar aconteceu para as misturas com fibras de pinho, para as misturas com 0,50% e 1,0% de fibras houve um retardo de 30 minutos e 85 minutos, respectivamente. Ao final, durante o período de desaceleração, as curvas das misturas contendo fibras, tanto de eucalipto quanto de pinho, ficam novamente muito próximas da referência. Isto significa que as fibras provocaram um pequeno retardo das reações de hidratação somente nas primeiras horas.

Figura 4.11 – (a) Curvas de liberação de calor para as misturas REF, EU 0,50%, EU 1,0%, PI 0,50% e PI 1,0%; (b) zoom nas primeiras 40 horas para as misturas contendo fibras de eucalipto; (c) zoom nas primeiras 40 horas para as misturas contendo fibras de pinho.

Na Figura 4.12 apresentam-se as curvas de calor acumulado *versus* tempo para a mistura REF e com 0,50% e 1,0% de fibras de eucalipto e de pinho. Nota-se que as misturas de 0,50% de fibras apresentaram um pequeno aumento marginal do calor total envolvido após 120 horas de teste quando comparado à referência. Porém, as misturas contendo 1,0% de fibras apresentaram redução sensível do calor total envolvido, 4,5% para EU 1,0% e 7,0% para PI 1,0%. Vale ressaltar novamente que uma redução já era esperada (conforme explicado no item 4.2.3), mas a magnitude da redução esperada era menor. Isto indica que as fibras de estudadas diminuem a formação de produtos hidratados.

Figura 4.12 – Curvas do calor liberado acumulado para as misturas REF, EU 0,50%, EU 1,0%, PI 0,50% e PI 1,0%.

Comparando os resultados para as misturas contendo 1,0% de fibras e tipos de fibra diferente, observa-se que as fibras de pinho causaram um efeito de retardo mais expressivo que as fibras de eucalipto. Isso se deve ao fato das fibras de pinho mais hemicelulose, lignina e extrativo que as fibras de eucalipto. Estes resultados corroboram aqueles obtidos pelos ensaios de calorimetria adiabática. Assim como aqueles, estes resultados mostram que houve um retardo nas reações de hidratação e este efeito é mais pronunciado para as fibras de pinho.

O efeito de retardo também é relatado em diversos trabalhos (CARVALHO *et al.*, 2008; HOJOS *et al.*, 2013) e também com outras espécies de fibras naturais como sisal e coco (AGGARWAL e SINGH, 1990), e juta (CHAKRABORTY *et al.*, 2013). Nestes trabalhos, afirma-se que este efeito é causado pelos componentes das fibras

(açucares, lignina e outros), uma vez que é sabido que a adição de tais componentes separadamente em materiais cimentícios causa este efeito (JUENGER e JENNINGS, 2002; BISHOP e BARRON, 2006; ZHANG, 2010). Porém o mecanismo, ou seja, como os componentes afetam a hidratação é ainda desconhecida. Supõe-se que seja através da formação de uma barreira em volta dos grãos de cimento parcialmente hidratados.

4.2.5 Resistência à Compressão

A evolução da resistência à compressão no tempo das pastas em estudo está apresentada na Figura 4.13, Figura 4.14, Figura 4.15 e Figura 4.16. A partir dos resultados de resistência à compressão determinou-se a evolução do grau de hidratação com o tempo (adotando $\xi_0 = 0,1$ e para $f_c(\infty)$ foi considerada a resistência à compressão da maior idade ensaiada – 180 dias e 90 dias). A evolução do grau de hidratação no tempo é apresentada nas Figura 4.17 a Figura 4.20.

Figura 4.13 – Evolução da resistência à compressão das pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%.

Figura 4.14 – Evolução da resistência à compressão da pasta de referência e as misturas contendo fibras de eucalipto.

Figura 4.15 – Evolução da resistência à compressão das pastas: (a) REF; (b) PI 0,25%; (c) PI 0,50%; (d) PI1,0%.

Figura 4.16 – Evolução da resistência à compressão das pastas contendo fibras de pinho.

Figura 4.17 – Evolução do grau de hidratação obtido a partir do fc das pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%.

Figura 4.18 – Evolução do grau de hidratação obtido a partir do fc no tempo das pastas contendo fibras de eucalipto.

Figura 4.19 – Evolução do grau de hidratação obtido a partir do fc das pastas: (a) REF; (b) PI 0,25%; (c) PI 0,50%; (d) PI 1,0%.

Figura 4.20 – Evolução do grau de hidratação obtido a partir do fc no tempo das pastas contendo fibras de pinho.

Os resultados obtidos indicam que a presença das polpas reduziu a resistência à compressão da mistura de referência e que isso foi mais expressivo para as misturas com 1% de polpa. A redução na resistência final (180 dias) está em consonância com a menor formação de produtos hidratados indicada nos ensaios de hidratação adiabática e isotérmica. Entretanto, é importante ressaltar o fato de que a redução na resistência (ver Tabela 4.7 onde a polpa de eucalipto mostra uma redução de cerca de 16%) ser um pouco maior do que a observada na liberação de calor, esta relacionada com questões como a redução da trabalhabilidade da mistura que pode provocar uma maior porosidade nas amostras (efeito físico) e, também, o próprio aumento de porosidade intrínseco a adição desse tipo de fibras na pasta (fibras de celulose são porosas).

As evoluções dos módulos de elasticidade das misturas com a hidratação estão apresentadas na Figura 4.21 e na Figura 4.23 partes (a), (b), (c) e (d). A Figura 4.22 e a Figura 4.24 apresenta os resultados de todas as misturas. Os resultados indicam que a partir de um grau de hidratação de cerca de 0,8 todas as pastas não apresentam acréscimos nos seus módulos de elasticidade. Além disso, a adição de polpas não traz alterações significativas ao módulo de elasticidade durante a hidratação.

Figura 4.21 – Evolução do módulo das pastas com a hidratação: (a) REF; (b) EU 0,25%; (c) EU 0,50%; (d) EU 1,0%.

Figura 4.22 – Evolução dos módulos das pastas contendo fibras de eucalipto com a hidratação.

Figura 4.23 – Evolução do módulo das pastas com a hidratação: (a) REF; (b) PI 0,25%; (c) PI 0,50%; (d) PI 1,0%.

Figura 4.24 – Evolução dos módulos das pastas contendo fibras de pinho com a hidratação.

4.3 Propriedades das Pastas no Estado Endurecido

4.3.1 Propriedades Mecânicas

4.3.1.1 Comportamento sob Compressão Uniaxial

Na Figura 4.25 e na Figura 4.26 são apresentadas as curvas típicas tensão versus deformação uniaxial para as idades de 3, 7, 28, 90 e 180 dias das misturas contendo fibras de eucalipto e de pinho, respectivamente. Na Tabela 4.7 e na Tabela 4.8 são mostradas as médias obtidas para resistência à compressão (f_{c_RUP}), a deformação uniaxial correspondente à tensão de pico (ε_u) e o módulo de elasticidade (E_c) para os sete traços com as idades de 3, 7, 28, 90 e 180 dias, e a média obtida para o coeficiente de Poisson (v) aos 28 dias. Como a deformação lateral foi aquisitada somente para a idade de 28 dias, só foi possível obter o coeficiente de Poisson e deformação volumétrica para esta idade. As curvas tensão *versus* deformação de todos os corpos de prova ensaiados são apresentadas no Anexo A. Foram realizados pelo menos 3 ensaios por mistura/idade. A análise estatística dos resultados é apresentada no Anexo B.

Figura 4.25 – Curvas típicas tensão-deformação dos traços com fibras de eucalipto: (a) aos 3 dias; (b) aos 7 dias; (c) aos 28 dias; (d) aos 90 dias; e (e) aos 180 dias.

Os resultados de resistência à compressão aos 3 dias de idade das misturas reforçadas com fibras de eucalipto foram diferentes estatisticamente da mistura de referência. Por exemplo, as misturas EU 0,25% e EU 0,50% foram, respectivamente, 8,6% e 5,1% mais resistentes que a mistura de referência, enquanto que a mistura EU 1,0% apresentou uma resistência 15,1% inferior à da mistura de referência. O aumento observado para as misturas reforçadas com menores volumes de polpa pode explicado pelo fato de as fibras, sendo hidrófilas, serviram de depósito de água, favorecendo a nucleação, e aumentar a quantidade de produtos hidratados (ARDANUY *et al.*, 2011). Os resultados obtidos com os ensaios de pulso ultrassônico e condutividade elétrica indicam a mesma tendência conforme mostrado no item 4.2.1 e no item 4.2.2. A queda de resistência observada para a mistura EU 1,0% deve-se provavelmente, a presença de uma maior quantidade de ar aprisionado na mistura, devido à maior dificuldade de compactação da mistura fresca. Vê-se maior presença de defeitos nos corpos-de-prova da mistura EU 1,0% na Figura 4.30.

Figura 4.26 – Curvas típicas tensão-deformação dos traços com fibras de pinho: (a) aos 3 dias; (b) aos 7 dias; (c) aos 28 dias; e (d) aos 90 dias.

No caso das misturas reforçadas com fibras de pinho, as misturas PI 0,25% e PI 0,50% obtiveram resistências à compressão, aos 3 dias de idade, estatisticamente iguais a da mistura de referência (acréscimos inferiores à 4%). Para o maior teor de substituição, ocorreu uma redução na resistência de 16,7%. O motivo dessa redução é, provavelmente, o mesmo que ocorreu para EU 1,0% (pela presença de ar aprisionado- ver Figura 4.31).

A presença de reforço aumentou a ductilidade pós-pico da matriz conforme pode ser observado na Figura 4.25 e Figura 4.26. A análise estatística indicou que a mistura de EU 0,25% tem a mesma deformação de pico, aos 3 dias de idade, da mistura de referência. Já para as misturas com teor de 0,50% e 1,0% de eucalipto foram observados acréscimos na deformação de pico de 25,7% e 19,6 %, respectivamente. Comportamento similar foi observado para as fibras de pinho para a mesma idade, o valor da deformação de pico das misturas foi superior à deformação de pico da referência, sendo este aumento da ordem de 20%. O aumento mais expressivo foi observado com a mistura com 0,50% de substituição (29,22%).

Tabela 4.7 – Valores médios da resistência à compressão e deformação uniaxial correspondente à tensão de pico para as misturas em estudo com idades de 3, 7, 28, 90 e 180 dias.

	Ruptura									
Mistura	3 dias		7 dias		28 dias		90 dias		180 dias	
	f _{c_RUP} (MPa) – CV (%)	ε _u (με) – CV (%)	f _{c_RUP} (MPa) – CV (%)	ε _u (με) – CV (%)	f _{c_RUP} (MPa) – CV (%)	ε _u (με) – CV (%)	<i>f_{c_RUP}</i> (MPa) − CV (%)	ε _u (με) – CV (%)	f _{c_RUP} (MPa) – CV (%)	ε _u (με) – CV (%)
REF	21,73 -0,49	4792,66 - 6,99	40,06 - 1,78	4644,43 – 2,65	62,30 - 2,04	4112,83 – 0,42	69,79 - 4,83	4249,06 - 8,51	74,58 – 2,10	4949,95 – 6,83
EU 0,25%	23,59 – 1,88	4443,25 – 9,71	40,78 – 0,85	5017,96 – 3,66	61,72 – 5,00	3912,80 – 12,11	68,37 – 1,96	4107,67 – 6,39	68,29 – 1,93	4356,89 – 2,59
EU 0,50%	22,83 – 1,75	6024,94 - 9,13	39,65 – 1,18	4962,22 – 6,39	57,89 – 3,45	3839,88 - 7,70	65,98 – 3,49	3684,49 – 9,50	67,54 - 2,00	4112,24 – 8,63
EU 1,0%	18,45 – 1,22	5731,79 – 8,47	34,41 – 2,10	4977,43 – 2,86	53,04 – 1,42	3927,73 – 1,80	62,28 - 3,65	4473,88 – 9,49	62,41 – 1,48	4115,80 – 8,17
PI 0,25%	22,65 – 1,47	6130,32 – 4,83	40,05 – 1,77	3302,38 - 8,87	67,48 – 1,06	5115,13 – 5,03	-	-	-	-
PI 0,50%	21,79 – 1,73	7530,59 – 4,54	40,04 - 0,70	3987,28 – 3,39	66,46 – 5,82	5040,60 - 8,72	69,24 – 1,28	4330,44 – 0,76	-	-
PI 1,0%	18,10 – 3,97	5961,99 – 3,02	33,49 – 2,14	4467,77 – 6,27	58,38 – 1,41	5351,14 – 5,03	65,84 – 1,32	4686,84 - 6,43	-	-

Mioturo	E _c (GPa) - CV (%)						
Wistura	3 dias	7 dias	28 dias	90 dias	180 dias	28 dias	
REF	11,41 – 0,90	14,55 – 1,70	19,26 – 2,85	19,66 – 3,01	18,95 – 1,06	0,23 – 3,81	
EU 0,25%	13,01 – 2,83	13,62 – 3,42	19,58 – 2,68	19,72 – 2,46	19,20 – 8,68	0,25 – 1,59	
EU 0,50%	11,79 – 2,64	14,87 – 3,27	19,74 – 4,22	20,02 - 2,07	19,83 – 4,15	0,25 – 4,21	
EU 1,0%	9,61 – 2,99	13,31 – 1,85	17,77 – 4,21	18,48 – 1,16	18,37 – 2,00	0,23 - 4,36	
PI 0,25%	11,40 – 6,15	17,53 – 2,86	18,59 – 3,43	20,63 – 2,18	20,16 - 4,35	0,21 – 1,57	
PI 0,50%	10,30 - 4,22	16,32 – 2,62	19,11 – 1,75	19,05 – 3,42	20,78 – 5,14	0,21 – 4,49	
PI 1,0%	10,02 – 3,71	14,12 – 3,30	17,29 – 2,53	18,18 – 1,29	18,24 – 3,27	0,20 – 1,78	

Tabela 4.8 – Valores médios de módulo de elasticidade para as misturas nas idades de 3, 7, 28, 90, 180 dias e coeficiente de Poisson das misturas na idade de 28 dias.

Com relação ao módulo de elasticidade, a mistura EU 0,25% apresentou um aumento de 14,0%, enquanto que a mistura PI 0,25% apresentou módulo igual ao da referência. A mistura EU 0,50% também apresentou um módulo estatisticamente igual a da mistura de referência, enquanto que o valor do módulo para a mistura EU 1,0% apresentou redução de 15,8% quando comparada ao da mistura de referência. Para as fibras de pinho, houve um decréscimo nos valores de módulo de elasticidade com o aumento do teor de fibras (redução de 9,7% e 12,2% para os teores de 0,5% e 1,0%).

A inclusão de polpas previne a fissuração devido à retração, causando um leve aumento no módulo de elasticidade. Tal efeito é mais relevante aos 3 dias de idade. Entretanto, a adição das fibras também incorpora poros à pasta, diminuindo o módulo de elasticidade. Este último efeito foi predominantemente observado para as misturas nas cinco idades de ensaios.

Aos 7 dias de idade, tanto as misturas reforçadas com fibras de eucalipto quanto aquelas contendo fibras de pinho não apresentaram resistência à compressão estatisticamente diferentes quando comparadas com a mistura de referência (exceto as misturas com teor de fibra de 1,0%). Nesse caso, as misturas EU 1,0% e PI 1,0% foram, respectivamente, 14,1% e 16,4% menos resistentes que a mistura de referência. A magnitude da redução de resistência é similar a obtida de ensaio aos 3 dias de idade.

A adição das fibras de eucalipto nas misturas aumentou em cerca de 7,5% a deformação de pico da mistura de referência. As misturas contendo fibras de pinho apresentaram, no entanto, diminuição da deformação de pico para as misturas PI 0,25% e PI 0,50%. A redução foi de 28,9% para a mistura PI 0,25% e de 14,2% para mistura PI 0,50%. Esta redução não foi observada para a mistura de maior teor, PI 1,0%, para a qual o valor da deformação de pico foi estatisticamente igual ao da mistura de referência.

Com relação ao módulo de elasticidade, as misturas EU 0,25% e EU 1,0% apresentaram uma pequena redução em relação à referência (redução de 6,4% e 8,5%). A mistura EU 0,50% apresentou módulo estatisticamente igual ao da mistura de referência. Para as misturas reforçadas com fibras de pinho, houve um acréscimo nos valores de módulo de elasticidade para as misturas PI 0,25% e PI 0,50% (de 12,2 - 20,5%), enquanto que o módulo de elasticidade da mistura PI 1,0% foi estatisticamente igual a da referência.

As resistências à compressão, aos 28 dias de idade, das misturas reforçadas com 0,5% e 1,0% de fibras de eucalipto apresentaram redução em relação ao traço de referência de, respectivamente, 7,1% e 14,9%. Entretanto, a mistura EU 0,25% apresentou resistência estatisticamente igual à da referência. Quanto às misturas contendo fibras de pinho, as reforçadas com teores de 0,25% e 0,50% apresentaram um pequeno aumento na resistência (em torno de 7%), mas a mistura reforçada com maior teor de fibras mostrou uma redução de cerca de 6,3%.

A adição das fibras de eucalipto não causou diferença significativa na deformação de pico nesta idade quando comparadas a mistura de referência. Para as misturas contendo fibras de pinho, houve um aumento da deformação de pico. O aumento foi de 24,4% para o teor de 0,25%, de 22,6% para o teor de 0,50% e de 30,1% para o maior teor.

O módulo de elasticidade, aos 28 dias, tanto das misturas contendo fibras de eucalipto quanto daqueles reforçados com pinho nas frações volumétricas de 0,25% e 0,50% não apresentaram diferenças estatisticamente significativas em relação ao da mistura de referência. Somente as misturas com maior teor de substituição (EU 1,0% e PI 1,0%) apresentaram redução do módulo de elasticidade: de cerca de 8 - 10%.

No que diz respeito ao coeficiente de Poisson, os valores variaram entre 0,20 e 0,25. Para os compósitos contendo fibras de eucalipto, os valores variaram entre 0,23 e 0,25 (similares ao da matriz de referência). Já para aqueles contendo fibras de pinho o coeficiente de Poisson variou entre 0,20 e 0,21, sendo ligeiramente inferior que o da mistura de referência.

Para a idade de 90 dias, nota-se que os resultados de tensão e deformação de pico para a mistura PI 0,25% não foram mostrados. Houve um problema de faceamento das amostras que levou os corpos-de-prova a romperem prematuramente. Entretanto, foi possível determinar o valor do módulo de elasticidade obtido, uma vez que ele é calculado a partir do trecho inicial da curva, muito antes da ruptura do material. Para a idade de 180 dias também ocorreram problemas similares e, assim, os resultados obtidos para as misturas com fibras de pinho, exceto o módulo de elasticidade, não são mostrados.

Os resultados de resistência à compressão aos 90 dias tanto para as misturas com fibras de eucalipto quanto para aquelas contendo fibras de pinho não apresentaram diferenças significativas quando comparadas com o da mistura de referência (exceto as misturas EU 1,0% e PI 1,0%). As misturas EU 1,0% e PI 1,0% foram, respectivamente, 10,8% e 5,7% menos resistentes que a mistura de referência.

A adição tanto das fibras de eucalipto quanto de fibras de pinho nas misturas não causou diferenças estatisticamente significativas na deformação de pico nesta idade quando comparadas a mistura de referência.

É importante observar que o aumento de ductilidade pós-pico observado nas idades de 3 dias para ambas as espécies de fibras, e aos 7 dias para as misturas contendo fibras de pinho, aos 28, 90 e 180 dias, já não aparece. Como a resistência da matriz aumentou bastante, nenhum dos teores foi suficiente para controlar eficientemente o processo de ruptura do material.

Com relação ao módulo de elasticidade aos 90 dias de idade, tanto as misturas contendo fibras de eucalipto quanto aquelas reforçadas com pinho nas frações volumétricas de 0,25% e 0,50% não apresentaram diferenças significativas em relação à mistura de referência. Somente as misturas contendo 1,0% de polpa apresentaram redução do módulo de elasticidade, variando entre 6,0 e 7,5%.

Os resultados de resistência à compressão aos 180 dias para as misturas com fibras de eucalipto apresentaram diferenças estatisticamente significativas quando comparadas com a mistura de referência. As misturas EU 0,25%, EU 0,50% e EU 1,0% foram, respectivamente, 8,4%, 9,4% e 16,3% menos resistentes que a mistura de referência.

A adição das fibras de eucalipto nas misturas também acarretou redução na deformação de pico nesta idade quando comparadas a mistura de referência. Para a mistura EU 0,25%, o valor da deformação foi estatisticamente igual à da matriz. Já para as misturas EU 0,50% e EU 1,0%, houve diminuição da deformação de pico em torno de 17%.

No que diz respeito ao módulo de elasticidade aos 180 dias, os compósitos com fibras de eucalipto apresentaram valores de módulo de elasticidade estatisticamente iguais ao da referência. Para as fibras de pinho, houve um acréscimo de cerca de 10% no valor do módulo de elasticidade somente para a mistura PI 0,50%. As demais não apresentaram diferenças significativas em relação à referência.

4.3.1.1.1 Processo de Fratura

As curvas tensão *versus* deformação obtidas nos ensaios aos 28 dias de idade foram analisadas segundo o processo de fratura, definindo três diferentes estágios de avaliação, conforme descrito por TOLEDO FILHO (1997). A Figura 4.27 ilustra os três níveis de avaliação. O primeiro nível, denominado como ponto A na Figura 4.27, é definido como início do processo de microfissuração e propagação das microfissuras. Este nível é o ponto onde a curva tensão-deformação axial desvia da linearidade. As fissuras, então, propagam-se até se encontrarem e formarem várias fissuras maiores. Este ponto foi denominado como ponto de coalescência de fissura e, na Figura 4.27, corresponde ao ponto B. Estas fissuras maiores se propagam até atingirem seu comprimento crítico e a argamassa atinge sua resistência de ruptura no ponto C.

Figura 4.27 – Níveis de avaliação do processo de microfissuração da argamassa submetida à esforços de compressão: (a) Tensão *versus* deformação axial e (b) Tensão *versus* deformação volumétrica.

A influência do tipo e volume de polpa foi analisada observando o processo de fratura dos compósitos. Para tanto foi avaliada a relação entre a tensão de primeira fissura e a tensão de pico $(f_{C_1a_f}/f_{C_RUP})$ e a relação entre a tensão de coalescência de fissura e a tensão de pico (f_{C_2CF}/f_{C_RUP}) . Como a deformação lateral foi medida somente para a idade de 28 dias, só foi possível obter o ponto de coalescência de fissura para os compósitos nesta idade. Para as demais idades, foi obtido somente o ponto de primeira fissura.

Na Figura 4.28 é mostrada a influência do tipo de fibra e da fração volumétrica na relação entre a tensão de primeira fissura e a tensão de ruptura na matriz aos 28

dias de idade e na Figura 4.29 é mostrada a influência do tipo de fibra e da fração volumétrica na relação entre a tensão de coalescência de fissuras e a tensão de ruptura.

	Primeira	Fissura	Coalescência de Fissuras			
Misturas	f _{c−1^af} (MPa) – CV (%)	$\varepsilon_{c_1 a_f}$ (µɛ) – CV (%)	<i>f_{c_CF}</i> (MPa) − CV (%)	ε _{c_CF} (με) – CV (%)		
REF	38,87 – 2,47	2041,06 - 4,13	61,44 – 1,82	3905,02 - 2,84		
EU 0,25%	40,95 - 6,10	4174,62 – 3,35	58,97 – 2,02	3565,22 – 3,63		
EU 0,50%	34,09 - 5,50	1748,85 – 11,67	55,51 – 3,53	3279,38 – 1,43		
EU 1,0%	31,71 – 5,42	1849,87 – 10,28	50,27 - 0,86	3326,83 - 4,90		
PI 0,25%	37,93 – 7,33	2061,90 - 4,89	67,26 – 0,35	4959,34 – 4,53		
PI 0,50%	36,99 – 5,96	1899,67 – 11,75	64,38 – 1,81	4827,78 - 4,74		
PI 1,0%	32,98 - 6,73	1962,04 – 5,72	56,10 – 1,34	4441,61 – 4,32		

Tabela 4.9 - Valores médios da resistência de primeira fissura e de coalescência de fissuras e suas respectivas a deformações para as misturas aos 28 dias.

Figura 4.28 – Efeito do tipo de fibra e fração volumétrica nos valores percentuais da resistência à primeira fissura da matriz aos 28 dias.

Figura 4.29 - Efeito do tipo de fibra e fração volumétrica nos valores percentuais da resistência de coalescência de fissuras da matriz aos 28 dias.

Aos 28 dias de idade, nota-se que com o aumento na fração volumétrica de fibras, tanto de eucalipto quanto de pinho, provocou uma diminuição de cerca de 4,2 e 9,5%, respectivamente, na relação $(f_{C_1^af}/f_{C_RUP})$.

Os resultados indicam que as polpas não conseguiram deter o crescimento das microfissuras de tração e de cisalhamento devido, provavelmente à baixa aderência com a matriz e seus comprimentos curtos. Com fibras longas (10-25mm) de sisal TOLEDO FLHO (1997) observou que a fibras de sisal foram mais eficientes para deter o crescimento dessas fissuras.

A partir da Figura 4.29, observa-se que as fibras, tanto de eucalipto quanto de pinho, causam uma leve redução (inferior a 3,2%) na relação ($f_{C_{CF}}/f_{C_{RUP}}$) aos 28 dias de idade. Esta tendência de redução também foi observada por TOLEDO FILHO (1997) para compósitos reforçados com fibras de sisal. Segundo o autor, isso ocorre porque as fibras não conseguem conter o processo de crescimento do emaranhado de fissura relativamente maior nesse estágio do carregamento.

4.3.1.1.2 Modo de Ruptura

O modo de ruptura das pastas ao longo do tempo foi praticamente o mesmo, assim, optou-se por apresentar o modo de ruptura para uma idade somente. Como exemplo, os corpos-de-prova rompidos aos 3 dias de idade dos traços com fibras de eucalipto, com fibras de pinho e a referência são mostrados na Figura 4.30 e na Figura 4.31. Os demais modos de ruptura encontram-se no Anexo A. Observou-se que para a mistura de referência o modo de ruptura foi cisalhante e cônica, com desprendimento de pedaços do material. Essa ruptura aconteceu abruptamente. Para as misturas fibrosas, os corpos-de-prova apresentaram um modo de fratura mista cisalhante e colunar. Diferentemente da referência, não houve desprendimento de pedaços do material.

Figura 4.30 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 3 dias.

Figura 4.31 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 3 dias.

4.3.1.2 Comportamento sob Compressão Triaxial

A Figura 4.32 e a Figura 4.33 apresentam as curvas típicas tensão *versus* deformação axial obtidas para as duas tensões de confinamento, além da curva típica para a pasta ensaiada sem confinamento. As curvas tensão *versus* deformação de todos os corpos de prova ensaiados são apresentadas no Anexo A. A análise estatística dos resultados está apresentada no Anexo B.

Figura 4.32 - Curvas típicas tensão versus deformações axial para pasta contendo fibras de eucalipto submetida a tensões de confinamento de 0, 4,14 e 8,28 MPa: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 4.33 - Curvas típicas tensão versus deformações axial para pasta contendo fibras de fibras de pinho submetida a tensões de confinamento de 0, 4,14 e 8,28 MPa: (a) REF; (b) PI 0,25%; (c) PI 0,50% e (d) PI 1,0%.

A partir dos resultados obtidos, foram calculados os círculos de Mohr. Na Figura 4.34 e na Figura 4.35 é apresentada a variação da tensão cisalhante com a tensão confinante, para as pastas de referência, com diferentes teores fibras de eucalipto e também com pinho. As médias obtidas para a tensão desviadora (σ_d), coesão (S_0) e ângulo de atrito interno (φ), bem como também as médias obtidas para a deformação uniaxial correspondente à tensão de pico (ε_u) e o módulo de elasticidade (E_c) para cada tensão de confinamento (e seus referentes coeficientes de variação) são apresentadas na Tabela 4.10.

Figura 4.34 - Círculos de Mohr e envoltória de ruptura das pastas com diferentes teores de fibras de eucalipto: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 4.35 - Círculos de Mohr e envoltória de ruptura das pastas com diferentes teores de fibras de pinho: : (a) REF; (b) PI 0,25%; (c) PI 0,50% e (d) PI 1,0%.

Os resultados dos ensaios triaxias indicam que a aplicação da pressão confinante de até 8,28 MPa não alterou significativamente o valor do módulo de elasticidade das misturas estudadas (com e sem polpa). A tensão e a deformação de pico, no entanto, são consideravelmente aumentadas com o aumento da tensão confinante. A deformação de pico apresentou acréscimo com o aumento da tensão confinante tanto para as misturas com fibras de eucalipto quanto para aquelas contendo fibras de pinho. Isto é razoável, pois, quanto maior a tensão confinante, mais restrição o material sofre para se deformar lateralmente e, assim, ocorre um aumento da deformação na direção da aplicação da tensão axial.

Mistura	σ ₃ * (MPa)	σ _d *(MPa) – CV (%)	σ ₁ *(MPa)	ε _u (με) - CV (%)	E _c (GPa) - CV (%)	S₀ (MPa)	φ (°)
	0,00	62,3 - 2,04	62,3	4112,83 - 0,42	19,26 – 2,85		
REF	4,14	-	-	-	-	25,45	11,49
	8,28	70,56 – 2,97	78,84	5831,21 – 3,15	17,24 – 0,65		
	0,00	61,72 – 5,00	61,72	3912,8 – 12,11	19,58 – 2,68		
EU 0.25%	4,14	70,66 – 3,71	74,8	6339,02 - 0,00**	18,29 - 0,00**	22,72	18,41
	8,28	69,37 – 1,88	77,65	5984,15 – 5,26	18,5 – 4,19		
	0,00	57,89 – 3,45	57,89	3839,88 - 7,7	19,74 – 4,22		
EU 0.50%	4,14	-	-	-	-	20,91	18,29
0,0070	8,28	66,63 – 0,35	70,77	5763,03 – 0,61	18,84 – 5,20		
	0,00	53,04 – 1,43	53,04	3927,73 – 1,8	17,77 – 4,21		
EU 1.0%	4,14	64,89 - 3,72	69,03	4307,46 - 0,00**	19,74 - 0,00**	17,48	23,49
.,.,.	8,28	64,01 – 0,41	72,23	6365,35 - 5,47	16,48 – 0,54		
5.	0,00	67,48 – 1,06	67,48	5115,13 – 5,03	18,59 – 3,43		
PI 0.25%	4,14	66,78 – 0,79	70,92	5571,09 - 4,57	18,01 – 2,44	33,98	0***
	8,28	67,38 – 1,61	75,66	6352,57 – 7,59	17,83 – 2,03		
	0,00	67,24 – 5,92	67,24	5040,6 - 8,72	19,11 – 1,75		
PI 0.50%	4,14	70,08 – 3,72	74,22	6114,01 – 11,16	17,82 – 1,53	33,50	0***
0,0070	8,28	66,53 - 0,00**	74,81	-	-		
	0,00	59,03 - 0,72	59,03	5351,14 – 5,03	17,29 – 2,53		
PI 1,0%	4,14	62,12 – 0,83	66,26	6372,54 – 3,68	16,45 – 4,74	29,35	1,5
	8,28	59,47 – 1,65	67,76	7621,36 – 5,95	15,98 – 6,22		

Tabela 4.10 - Propriedades mecânicas sob cargas de compressão triaxial das misturas em

estudo.

 $\sigma_3 = tensão principal menor$

 σ_1 = tensão principal maior

 $\sigma_d = \sigma_1 - \sigma_3$

**resultado de somente um ensaio

***considerado zero, pois não há diferenças estatisticamente significativas entre as tensões desviadoras.

No que se refere à coesão e ao angulo de atrito, observa-se que a coesão das pastas contendo fibras de pinho é cerca de 15 a 33% maior que a da pasta de referência. O ângulo de atrito, no entanto é praticamente nulo (menor 1,5°C). Quando as fibras de eucalipto foram utilizadas como reforço um significativo aumento do ângulo de atrito foi observado (acréscimo de cerca de 60%) enquanto ocorria uma redução na coesão da pasta REF variando de 11 a 30 %, com o aumento da fração volumétrica de fibras. Observa-se que os efeitos são contrários. Os resultados apresentados indicam que a fricção interna entre partículas aumentou com a presença das fibras de eucalipto e diminuiu com as fibras de pinho. A diminuição da coesão para

as fibras de eucalipto pode estar relacionada com a porosidade das pastas. VITORINO (2012) observou que, para pastas contendo fibras de volastonita em teores de 2,5, 5 e 7,5%, a adição de fibras reduziu a coesão da pasta de referência. Segundo o autor, a explicação para esta redução seria o aumento da porosidade das misturas.

4.3.1.2.1 Modo de Ruptura

O modo de ruptura das pastas para todas as pressões foi praticamente o mesmo, assim, optou-se por apresentar o modo de ruptura para uma pressão somente. Como exemplo, os modos de ruptura das pastas para a pressão de 4,14 MPa podem ser observados na Figura 4.36 e na Figura 4.37. Os demais modos de ruptura encontram-se no Anexo A. É possível observar que para a mistura de referência o modo de ruptura foi cônica e cisalhante, com desprendimento de pedaços do material e, ao final do ensaio, o corpo-de-prova não se manteve íntegro. Para as misturas fibrosas com fibras de eucalipto dois tipos de fratura foram observados: cônica e vertical. Além disso, observou-se que houve desprendimento de pedaços do material para alguns corpos-de-prova, porém sem perda de integridade para as misturas EU 0,50% e EU 1,0%. Entretanto, entre as misturas com fibras de pinho, o modo de ruptura foi cisalhante e cônica para o teor de 0,25% e vertical e cisalhante para os teores de 0,50% e 1,0%. Houve desprendimento de material para os três teores, mas os corpos-de-prova contendo 1,0% se mantiveram íntegros.

REFERÊNCIA

EU 0,25%

EU 1,0%

EU 0,50%

Figura 4.36 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial com confinamento de 4,14 MPa.

Figura 4.37 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial com confinamento de 4,14 MPa.

4.3.1.3 Comportamento sob Flexão

As curvas típicas tensão *versus* deslocamento das misturas contendo fibras de eucalipto e fibras de pinho estão apresentadas na Figura 4.38 e na Figura 4.39. Os valores médios e os coeficientes de variação de carga e deslocamento de primeira fissura, resistência à tração na flexão, assim como os valores de carga máxima pós-fissuração e seus respectivos valores de tensão e deformação, são mostrados na Tabela 4.11. Os resultados apresentados correspondem a valores médios de quatro corpos-de-prova por ensaio, exceto as misturas marcadas com asterisco. As curvas carga *versus* deslocamento de todos os corpos de prova ensaiados são apresentadas no Anexo A. A análise estatística dos resultados é apresentada no Anexo B.

Figura 4.38 – Curvas tensão versus deslocamento para as mistura com diferentes teores de fibras de eucalipto.

Figura 4.39 – Curvas tensão versus deslocamento para as mistura com diferentes teores de fibras de pinho.

		Primeira Fissu	ra	Pós-fissuração			
Mistura	Carga (kN) – CV (%)	f _{F_1} a _f (MPa) − CV (%)	$\delta_{1^a f}$ (mm) – CV (%)	Carga (kN) – CV (%)	<i>f_{F_PF}</i> (MPa) − CV (%)	δ _{PF} (mm) – CV (%)	
REF	5,81 – 3,21	8,00 - 3,62	0,115 – 7,11	-	-	-	
EU 0,25%	6,01 – 5,52	8,51 – 6,71	0,115 – 8,52	-	-	-	
EU 0,50%*	5,31 – 0,16	7,33 – 0,29	0,108 – 0,84	-	-	-	
EU 1,0%*	4,92 – 2,66	6,69 – 2,83	0,109 – 6,24	-	-	-	
PI 0,25%	4,97 – 2,77	7,08 – 4,27	0,106- 6,16	-	-	-	
PI 0,50%*	5,21 – 1,78	7,47 – 0,90	0,132 – 5,41	-	-	-	
PI 1,0%	3,99 – 6,47	5,58 – 8,13	0,085 - 4,60	3,43 – 6,55	4,78 – 5,21	0,122 – 5,46	

Tabela 4.11 - Resultados médios de carga de primeira fissura e pós-fissuração e suas respectivas tensões e deslocamentos das pastas reforçadas com fibras de eucalipto e pinho.

*foram utilizados dois corpos-de-prova para as médias.

Analisando as Figura 4.38 e Figura 4.39, bem como a Tabela 4.11, é possível notar que a adição de fibras não proporcionou aumento nos valores de resistência à tração na flexão dos compósitos quando comparados com a mistura de referência. Para algumas misturas, houve até diminuição destes valores. Isto era esperado, pois se tratam de compósitos com teores baixos de fibras muito curtas e randomicamente distribuídas. Se os compósitos tivessem sido produzidos pelo método Hastchek, o teor de fibras poderia ser maior e melhorias nas propriedades à flexão seriam observadas.

Após a fissuração da matriz para as misturas contendo 0,50% e 1,0% de fibras, não acontece a ruptura imediata do compósito. Ocorre uma redução imediata da capacidade portante, entretanto o corpo-de-prova continua a deformar-se até que as fibras sejam arrancadas da matriz. Os valores de resistência à tração para as misturas EU 0,25%, EU 0,50% e PI 0,50% são estatisticamente iguais a da referência. Houve diminuição dos valores de resistência para as demais misturas. A maior diminuição foi de 30,3%, que aconteceu para a mistura de PI 1,0%.

Após a carga máxima, observou-se a abertura de uma única fissura para todas as misturas fibrosas e, após a perda de capacidade portante imediata anteriormente citada, só houve aumento da capacidade portante para a mistura PI 1,0%. Além disso, observou-se também, para esta mistura, uma maior absorção de energia no pós-pico. Para as misturas contendo fibras de eucalipto, isto pode estar relacionado com o
comprimento das fibras que pode ter sido insuficiente para transferir tensões ao ponto de causar incremento na capacidade portante do compósito, e/ou o volume de fibras estar longe do volume ótimo de fibras.

Com relação ao deslocamento de primeira fissura foi observado que o uso de fibra não proporcionou diferenças estatisticamente significativas, exceto para a mistura PI 1,0%. Para esta mistura foi obtida uma redução estatisticamente significativa de 26,1%.

4.3.1.3.1 Modo de Ruptura

Os modos de ruptura dos corpos-de-prova da mistura de referência estão mostrados na Figura 4.40. Na figura, é possível observar que os quatro corpos-deprova apresentaram ruptura frágil, com a abertura de apenas uma fissura, caracterizando a separação do corpo de prova em duas partes. Todas as fissuras se deram na zona de flexão pura, representada pelo terço médio dos corpos de prova.

Figura 4.40 – Modo de ruptura dos corpos-de-prova da mistura de referência.

Os modos de ruptura dos corpos-de-prova das misturas EU 0,25%, EU 0,50% e EU 1,0% estão apresentados, respectivamente, na Figura 4.41, Figura 4.42 e na Figura 4.43. Os corpos-de-prova da mistura EU 0,25%, assim como os da referência, apresentaram um modo de ruptura frágil, com a abertura de apenas uma fissura e com a separação do corpo de prova em duas partes. Para as misturas EU 0,50% e EU 1,0%, observa-se que todos os corpos de prova romperam apresentando uma ruptura dúctil. Todas as fissuras também se deram na zona de flexão pura.

Figura 4.41 – Modo de ruptura dos corpos-de-prova da mistura EU 0,25%.

Figura 4.42 – Modo de ruptura dos corpos-de-prova da mistura EU 0,50%.

Figura 4.43 – Modo de ruptura dos corpos-de-prova da mistura EU 1,0%.

Os modos de ruptura dos corpos-de-prova das misturas PI 0,25%, PI 0,50% e PI 1,0% estão apresentados, respectivamente, na Figura 4.44, Figura 4.45 e na Figura 4.46. Apesar da mistura PI 0,25%, assim como a referência, não apresentar uma região de pós-fissuração na Figura 4.39, o modo de ruptura apresentado nos corpos-de-prova não é o mesmo que o da referência. Os corpos-de-prova apresentaram abertura de uma única fissura, mas sem a divisão dos corpos-de-prova em duas partes. Para as misturas PI 0,50% e PI 1,0%, é possível notar que todos os corpos de prova romperam apresentando uma ruptura dúctil. Os ensaios de todos os corpos de prova foram interrompidos quando uma deflexão equivalente a 1,2 mm foi atingida. Até

essa deflexão não foi observado ruptura total de nenhum corpo de prova. Todas as fissuras também se deram na zona de flexão pura.

Figura 4.44 – Modo de ruptura dos corpos-de-prova da mistura PI 0,25%.

Figura 4.45 – Modo de ruptura dos corpos-de-prova da mistura PI 0,50%.

Figura 4.46 – Modo de ruptura dos corpos-de-prova da mistura PI 1,0%.

4.3.1.3.2 Índice de Tenacidade

Os valores médios de tenacidade calculados de acordo com a norma japonesa JCI-JSCESF-4 (1983) e seus respectivos coeficientes de variação são mostrados na Tabela 4.12. Conforme mostrado na seção 3.5.2.3, a tenacidade T_b é calculada até uma deflexão limite, que é dada por L/n, onde n=150. Para os corpos-de-prova ensaiados neste trabalho, L=180 mm e, assim, a deflexão limite seria de 1,2 mm. Porém, como pode ser observado na Figura 4.38 e na Figura 4.39, os compósitos já apresentavam cargas muito baixas a deflexão limite de 0,8 mm. Logo, definiu-se o cálculo da tenacidade e do seu índice até a deflexão limite de 0,8 mm, caracterizando o índice de tenacidade FT225.

Mistura	<i>T_b</i> (kN.mm)- CV (%)	FT225 (MPa) – CV (%)
EU 0,50%	0,789 - 4,33	1,36 – 4,52
EU 1,0%	0,691 - 6,02	1,18 – 5,25
PI 0,50%	0,792 – 12,49	1,42 – 13,72
PI 1,0%	0,941 – 7,02	1,64 — 7,41

Tabela 4.12 - Valores médios do índice de tenacidade de acordo com a norma japonesa.

A partir da Tabela 4.12, dentre as misturas contendo fibras de pinho, os resultados indicaram uma tendência de aumento na capacidade de suporte de cargas durante sua deformação conforme o aumento no teor de fibras. Entretanto, dentre as misturas contendo fibras de eucalipto, não houve diferenças estatisticamente significativas entre o uso de 0,50% e 1,0% de fibras.

Comparando as misturas de mesmo teor, mas com tipo de fibra diferente, não há diferenças estatisticamente significativas entre as misturas com fração volumétrica de 0,50% (EU 0,50% e PI 0,50%). Porém, para as misturas EU 1,0% e PI 1,0%, esta apresentou 39% a mais de capacidade de suporte de cargas durante a deformação de 0,8 mm que aquela.

5. CONSIDERAÇÕES FINAIS

As pastas de referência e contendo fibras tanto de eucalipto quanto de pinho apresentaram estabilidade e não foi verificada ocorrência de fase sobrenadante nos ensaios de água livre à temperatura ambiente. Com o aumento do teor de polpa observou-se uma redução da massa específica da mistura de referência, porém as diferenças foram inferiores a 3%.

A adição de fibras reduziu a trabalhabilidade (espalhamento) da mistura de referência de 15% a 40%. Entretanto foi possível observar que não ocorreram segregação nem formação de grumos nas pastas em estudo. Quando se comparou dois traços com mesmo teor de fibras, observou-se que a redução no espalhamento foi maior para as misturas com fibras de eucalipto. As fibras de eucalipto são muito mais finas e mais curtas que as fibras de pinho e, assim, tem-se mais fibras por volume de mistura acarretando uma maior área de contato e maior quantidade de água adsorvida na superfície do reforço.

Tal tendência também foi observada nos ensaios realizados com auxílio da palheta em cruz (*vane*). Os resultados mostraram que o limite de escoamento aumentou de forma não-linear com a adição de fibras. Até a fração de 0,50%, para ambas as fibras, verificou-se um aumento do limite de escoamento de até 13,5 vezes ao valor da referência. Porém, após este valor, ocorre um aumento do limite de escoamento mais expressivo (em torno de 60 vezes). Além disso, quanto maior o teor de fibras, maior foi o tempo necessário para que a estrutura tixotrópica se rompesse. Este efeito pode estar relacionado com o atrito entre as partículas da pasta que estão na superfície de cisalhamento.

Diversos métodos foram utilizados para avaliar a hidratação das pastas. Dentre eles, a determinação da cinética de hidratação por pulso ultrassônico. A partir dos resultados deste ensaio, foi possível observar que a presença das polpas de eucalipto e pinho não alterou significativamente o tempo correspondente ao patamar de percolação. Além disso, a inclinação do período de aceleração também não muda significativamente até cerca de 15 horas. Depois disso, foi verificado que a presença da polpa reduz a taxa de hidratação. Essa dupla taxa de hidratação durante o período de hidratação pode estar associada à cinética de formação dos diversos produtos hidratação incluindo o CSH pozolânico.

Em contrapartida, a avaliação da condutividade elétrica mostrou que a adição de fibras gerou um aumento na condutividade elétrica com relação à mistura de referência, exceto para a mistura de EU 0,25% que tem menor condutividade durante o período de indução. Os resultados obtidos indicam que o período de pré-indução não foi afetado pela presença das polpas de pinho e eucalipto nas frações volumétricas utilizadas. A partir do trecho da curva correspondente a aceleração também nota-se a dupla taxa de hidratação já observada nas curvas de velocidade de pulso ultrassônico. Conforme as curvas de condutividade x tempo mostram, nota-se que a condutividade das misturas com polpa é um pouco maior do que a da mistura de referência tanto no trecho correspondente a aceleração quanto ao pós-aceleração. Este aumento pode estar relacionado a dois fatores. O primeiro é o fato do aumento de condutividade indicar que há menos água quimicamente ligada e, assim, menos produtos hidratados formados. O segundo fator é o de que a condutividade também é dependente da interconectividade da estrutura de poros para poder acontecer e, assim, devido à presença de fibras porosas, ocorre uma manutenção desta rede permeável, aumentando a condutividade.

Foi observada também a relação entre a condutividade e a velocidade do pulso. Nota-se uma boa correlação dos resultados obtidos pelas diferentes técnicas. Após o período de indução, as reações de hidratação acontecem e o pulso ultrassônico se propaga preferencialmente pelos produtos hidratados e, durante o mesmo período, a condutividade expressa a quantidade de água ainda não combinada. As medições que são -opostas" (enquanto um valor aumenta, o outro diminui), mostraram-se bastante consistentes e apresentaram boa correlação quando transformadas em grau de hidratação.

A partir dos resultados de elevação adiabática, foi possível constatar que as reações de hidratação são dificultadas pela presença de fibras. Foi observada uma redução da elevação adiabática para as misturas fibrosas com relação à referência. Dentre misturas de mesmo teor de fibras, porém tipo de fibras diferente, verificou-se que as misturas contendo pinho obtiveram menor elevação. Com relação à cinética da hidratação, também foi verificado a dupla inclinação durante o período de aceleração entrando em ressonância com os resultados de condutividade e velocidade de pulso ultrassônico. Este comportamento deve estar relacionado, como já mencionando, às reações de hidratação dos diferentes compostos do cimento e da reação pozolânica do hidróxido de cálcio com a sílica ativa presente nas misturas.

Ao final dos métodos de estudo da hidratação, utilizou-se o método da calorimetria isotérmica. Os resultados obtidos por este ensaio corroboram aqueles obtidos pelos ensaios de calorimetria adiabática. Notou-se que, durante o período de pré-indução, tanto as fibras de eucalipto quanto de pinho, não alteraram o comportamento da mistura. Entretanto, a adição de fibras gerou um pequeno aumento no período de dormência tanto quanto um aumento no tempo em que o pico principal das reações de hidratação. O calor total liberado também foi reduzido com a adição de fibras, e este efeito foi mais expressivo para os compósitos contendo fibras de pinho.

O aumento do teor de fibras de celulose, tanto de eucalipto quanto de pinho, na mistura de referência acarretou em decréscimos na resistência à compressão quando se observa a evolução da resistência no tempo. No entanto, houve ganho na capacidade de deformação uniaxial até os 7 dias. Houve também redução do módulo de elasticidade para as pastas fibrosas. Com relação ao coeficiente de Poisson, as fibras de eucalipto não causaram diferenças significativas, porém as misturas contendo fibras de pinho tiveram redução deste coeficiente quando comparadas com a referência.

Nos ensaios triaxiais, verificou-se um aumento da resistência à compressão com o aumento da tensão confinante, exceto para a transição de 4,14 MPa para 8,28 MPa. A deformação de pico apresentou acréscimo com o aumento da tensão confinante tanto para as misturas com fibras de eucalipto quanto para aquelas contendo fibras de pinho. Observa-se que a coesão das pastas diminuiu com o aumento no teor de fibras de eucalipto e, no entanto, o ângulo de atrito interno aumentou. O resultado apresentado indica que a fricção interna entre partículas aumentou com a presença das fibras de eucalipto. Os resultados para as pastas com fibras de pinho apresentaram um aumento da coesão e drástica redução do ângulo de atrito em relação à referência. É possível que essa redução esteja associada a um aumento de porosidade, porém só poder-se-ia confirma tal afirmação após ensaios de porosimetria.

Nos ensaios de resistência à tração na flexão, notou-se que as misturas fibrosas tiveram resistência menor que a da referência, porém aumentaram a tenacidade e modificaram o modo de ruptura. A ruptura foi dúctil para todas as misturas fibrosas ao contrário da mistura de referência. Entretanto, somente para a mistura de PI 1,0% foi observado aumento da capacidade portante após a ruptura da matriz.

132

6. REFERÊNCIAS BIBLIOGRÁFICAS

- ABO EL-ENEIN, S.A.; KOTKATA, M.F.; HANNA, G.B.; SAAD, M.; ABD EL RAZEK, M.M. –Electrical conductivity of concrete containing silica fume", Cement and Concrete Research, v.25, n.8, p.1615-1620, Dez. 1995.
- AGGARWAL, L.K.; SINGH, J. –Effect of plant fibre extractives on properties of cement", Cement & Concrete Composites, v.12, n. 2, p.103-108, 1990.
- ALMEIDA, A.E.F.S; TONOLI, G.H.D.;SANTOS, S.F.; SAVASTANO JR., H. -Carbonatação acelerada efetuada nas primeiras idades em compósitos cimentícios reforçados com polpas celulósicas", Ambiente Construído, v. 10, n. 4, p.233-246, Dez. 2010.
- ARDANUY, M.; CLARAMUNT, J.; GARCÍA-HORTAL, J.A.; BARRA, M. –Fibermatrix interactions in cement mortar composites reinforced with cellulosic fibers", Cellulose, v. 18, n.2, p.281-289, Abr. 2011.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), NBR 13276: Argamassa para assentamento e revestimento de paredes e tetos - Preparo da mistura e determinação do índice de consistência, Rio de Janeiro, 2002.
- ASSOCIAÇÃO BRASILEIRA DE NORMA TÉCNICAS (ABNT), NBR 9831: Cimento Portland destinado à cimentação de poços petrolíferos – Requisitos e métodos de ensaio, Rio de Janeiro, 2006.
- ASTM C 642, Standard Specification for Portland Cement, American Society for Testing and Materials, Pensilvânia, USA, 2000.
- BALLOU, G. Handbook for Sound Engineers. 3. ed. [S.1.]: Focal Press, 2002.
- BALTHAR, V. K. C. B. L. M., 2010, Caracterização físico-química e mecânica de pastas de cimentação fibrosas, Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- BARNES, H. A.; NGUYEN, Q. D. –Rotating vane rheometry a review", Journal of Non-Newtonian Fluid Mechanics, v. 98, n. 1, p.1-14, Mar. 2001.

- BARNETO, A.G.; VILA, C.; ARIZA, J. –Eucalyptus kraft pulp production: Thermogravimetry monitoring", Thermochimica Acta, v. 520, n.1-2, p.110-120, Jun. 2011.
- BAUER, E.; SOUZA, J.G.G.; GUIMARÃES, E.A.; SILVA, F.G.S. –Study of the laboratory Vane test on mortars", Building and Environment, v.42, n.1, p.86-92, Jan. 2007.
- BEEK, A., 2000, Dielectric properties of young concrete: Non-destructive dielectric sensor for monitoring the strength development of young concrete. Ph.D Thesis, Universidade Técnica de Deft, Deft, Holanda.
- BELTRÁN, M.G.S., 2011, **Ductile cement-based composites with wood fibres:** Material design and experimental approach. Ph.D Thesis, Universidade Técnica de Deft, Deft, Holanda.
- BENTUR, A.; AKERS, S.A.S. –The microstructure and ageing of cellulose fibre reinforced autoclaved cement composites", International Journal of Cement Composites and Lightweight Concrete, v. 11, n. 2, p.111-115, Mai. 1989.
- BENTUR, A.; MINDESS, S. Fibre reinforced cementitious composites. 2nd edition. New York, Taylor and Francis, 2007.
- BENTZ, D.P., –Transient plane source measurements of the thermal properties of hydrating cement pastes", Materials and Structures, v.40, n.10, p.1073-1080, Dez. 2007.
- BILBA, K.; ARSENE, M-A.; OUENSANGA, A. –Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite", Cement & Concrete Composites, v.25, n.1, p. 91-96, Jan. 2003.
- BISHOP, M.; BARRON, A. R. -Cement hydration inhibition with sucrose, tartaric acid, and lignosulfonate: analytical and spectroscopic study", Ind. Eng. Chem. Res., v. 45, n. 21, p. 7042-7049, Set. 2006.
- BLANKENHORN, P.R.; BLANKENHORN, B.D.; SILSBEE, M.R.; DICOLA, M. -Effects of fibre surface treatments on mechanical properties of wood fibre-cement composites", Cement and Concrete Research, v.31, n.7, p.1049-1055, 2001.

- BOGER, D. V. –Rheology and the resource industries", Chemical Engineering Science, v. 64, n.22, p.4525-4536, Nov. 2009.
- BRITT, K.W., **Handbook of pulp and paper technology**, 2 ed. Nova Iorque, Editora Van Nostrand Reinhold Company, 1970.
- BROOKFIELD. BROOKFIELD DV-III Ultra programmable rheometer operating instructions [Manual do equipamento], 2012.
- BULLARD, J.W.; JENNINGS, H.M.; LIVINGSTON, R.A.; NONAT, A.; SCHERER, G.W.; SCHWEITZER, J.S.; SCRIVENER, K.L.; THOMAS, J.J. –Mechanisms of cement hydration", Cement and Concrete Research, v. 41, n. 12, p.1208-1223, Dez. 2011.
- CAMPOS, G. et al. **PROCELAB Procedimentos e Métodos de Laboratório destinados à Cimentação de Poços Petrolíferos**, Rio de Janeiro: Petrobras/Schlumberger/Halliburton/BJ Services, 2005.
- CARVALHO, M. A.; CALIL JR., C.; SAVASTANO JUNIOR, H.; TUBINOC, R; CARVALHO, M.T. –Microstructure and mechanical properties of gypsum composites reinforced with recycled cellulose pulp", Materials Research, v.11, n.4, p.391-397, Out-Dez. 2008.
- CASTRO, H.F., Apostila de aula do curso de Processos Químicos Industriais II, São Paulo: Universidade de São Paulo – Escola de Engenharia de Lorena, 2009. Disponível em: http://sistemas.eel.usp.br/docentes/arquivos/5840556/434/apostila4 papelecelulose.pdf> - Acesso em: 22 mar. 2014.
- CHAKRABORTY, S.; KUNDU, S.P.; ROY, A.; ADHIKARI, B.; MAJUMDER, S. B. –Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix", Industrial & Engineering Chemistry Research, v.52, n. 3, p.1252-1260, 2013.
- CLARAMUNT, J., 2011, Utilització de fibres vegetals per a l'elaboració de morters de ciment d'altes prestacions (SHCC). Tesi Doctoral, Universitat Politècnica de Catalunya, Barcelona, Espanya.
- COUTTS, R. S. P. –Wood fibre reinforced cement composites". In: SWAMY, R.N., (Ed). Natural fibre reinforced cement and concrete. Glasgow: Blackie. v. 5, p. 1-62, 1988.

- FIDELIS, M. E. A.; SILVA, F. A.; TOLEDO FILHO, R. D. –The influence of fiber treatment on the mechanical behavior of jute textile reinforced concrete". Key Engineering Materials, 600, p.469-474, Mar. 2014.
- FÖRDÖS, Z. –Natural or modified cellulose fibres as reinforcement in cement composites". In: SWAMY, R.N., (Ed). Natural fibre reinforced cement and concrete. Glasgow: Blackie. v. 5, p. 173-207, 1988.
- HOYOS, C.G., 2013, El uso de fibras naturales de fique em sus distintos tamaños jerárquicos em la construcción. Tesis Doctoral, Universidad de Buenos Aires, Buenos Aires, Argentina.
- HOYOS, C.G.; CRISTIA, E.; VÁZQUEZ, A. –Effect of cellulose microcrystalline particles on properties of cement based composites", Materials and Design, v.51, p.810-818, Out. 2013.
- JAPAN CONCRETE INSTITUTE, JCI-SF4: Method of test for flexural strength and flexural toughness of fibre reinforced concrete, JCI Standards for test methods of fibre reinforced, Japan, 1983.
- JENNINGS, H.M.; PRATT, P.L. –An experimental argument for the existence of a protective membrane surrounding portland cement during the induction period", Cement and Concrete Research, v.9, n. 4, p.501-506, Jul. 1979.
- JUENGER, M.C.G.; JENNINGS, H.M. –New insights into the effects of sugar on the hydration and microstructure of cement pastes", Cement and Concrete Research, v.32, n. 3, p.393-399, Mar. 2002.
- KACI, A.; BOURAS, R.; PHAN, V.T.; ANDRÉANI, P.A.; CHAOUCHE, M.; BROSSAS, H. –Adhesive and rheological properties of fresh fibre-reinforced mortars", Cement & Concrete Composites, v.33, n.2, p.218-224, Fev. 2011.
- KOCABA, V., 2009, Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Tese de Doutorado, Escola Politécnica Federal de Lausana, Lausanne, Suiça.
- KONSTA-GDOUTOS, M.S.; METAXA, Z.S.; SHAH, S.P. –Highly dispersed carbon nanotube reinforced cement based materials", Cement and Concrete Research, v.40, n.7, p. 1052-1059, Jul. 2010.

- LIMA, P. R. L., 2004, Análise teórica e experimental de compósitos reforçados com fibras de sisal. Tese de Doutorado, COPPE/ UFRJ, Rio de Janeiro, RJ, Brasil.
- LIN, X., SILSBEE, M.R., ROY, D.M., KESSLER, K., BLANKENHORN, P.R. -Approaches to improve the properties of wood fibre reinforced cementitious composites". Cement and Concrete Research, v. 24, n. 8, p.1558-1566, Set. 1994.
- MAHAUT, F.; MOKÉDDEM, S.; CHATEAU, X.; ROUSSEL, N.; OVARLEZ, G., -Effect odf coarse particles volume fraction on the yield stress and thixotropy of cementitious materials", Cement and Concrete Research, v.38, n.11, p. 1276-1285, nov. 2008.
- MEHTA, P. K.; MONTEIRO, P. J. M.. Concreto: Estrutura, Propriedades e Materiais, 3 ed. São Paulo, Editora Pini, 2008.
- MELO FILHO, J.A.; SILVA, F.A.; TOLEDO FILHO, R.D. –Degradation kinetics ang aging mechanisms on sisal fiber cement composite systems", Cement & Concrete Composites, v. 40, p.30-39, Jul. 2013.
- MOHAMED, M.A.S.; GHORBEL, E.; WARDEH, G. –Valorization of micro-cellulose fibers in seft-compacting concrete", **Construction and Building Materials**, v.24, n. 12, p.2473-2480, Dez. 2010.
- MOHAN, D.; PITTMAN JR., C.U. –Activated carbons and low cost absorbents for remediation of tri- and hexavalent chromium from water", Journal of Hazardous Materials, v. 137, n. 2, p.762-811, Set. 2006.
- MOHR, B.J., NANKO, H., KURTIS, K.E., –Durability of kraft pulp fiber-cement composites to wet/dry cycling", Cement and Concrete Composites, v. 27, n. 4, p. 435-448, Abr. 2005.
- MOHR, B.J., BIERNACKI, J.J., KURTIS, K.E., –Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites". Cement and Concrete Research, v. 37, n. 11, p. 1531–1543, Nov. 2007.
- MORAIS, S.A.L, NASCIMENTO, E.A.; MELO, D.C. –Análise da madeira de *Pinus* oocarpa parte I – estudo dos constituintes macromoleculares e extrativos voláteis", **Revista Árvore**, v. 29, n. 3, p.461-470, Mai.-Jun.2005.
- NGUYEN, Q. D.; BOGER, D. V. –Direct yield stress measurement with the vane method", Journal of Rheology, v.29, n.3, p.335-347, 1985.
- NILSSON, J.; SARGENIUS, P. –Effect of microfibrillar cellulose on concrete equivalent mortar fresh and hardened properties", KTH, ABE, 2011.

- NOCUN-WCZELIK, W.; CZAPIK, P. –Use calorimetry and other methods in the studies of water reducers and set retarders interaction with hydrating cement paste", **Construction and Building Materials**, v.38, p.980-986, Jan. 2013.
- ODLER, I., Hydration, Setting and Hardening of Portland Cement", In: Hewlett, P. C. (ed), *Lea's Chemistry of cement and Concrete*, 4 ed., chapter 6, Oxford, Inglaterra, Elsevier Inc., 1998.
- PEHANICH, J.L., BLANKENHORN, P.R., SILSBEE, M.R., –Wood fibre surface treatment level effects on selected mechanical properties of wood fibre-cement composites", Cement and Concrete Research, v. 34, n. 1, p.59-65, Jan. 2004.
- PEREIRA, C.; CALDEIRA JORGE, F.; IRLE, M.A.; FERREIRA, J.M. -Extrative contentes of two woods and cork of Portuguese origin and the interaction of these subtrates with cement suspensions", Forest Products Journal, v. 53, n. 10, p.39-43, Out.2003.
- PETIT, J-Y.; WIRQUIN, E.; VANHOVE, Y.; KHAYAT, K. –Yield stress and viscosity equations for mortars and self-consolidating concrete", Cement and Concrete Research, v.37, n. 5, p.655-670, Mai. 2007.
- RABELO, M.S., Tecnologia de fabricação de celulose: Apostila SENAI, Bahia:, 2009. Disponível em: http://www.scribd.com/doc/78099627/72p-Normalizado-Tecnologia-de-Fabricacao-de-Celulose - Acesso em: 22 mar. 2014.
- RAMAKRISHNA, G., SUNDARARAJAN, T., -Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar", Cement and Concrete Composites, v. 27, n. 5, 575-582, Mai. 2005.
- ROCHA, L. A.; AZEVEDO, C. T. Projetos de poços de petróleo: geopressões e assentamento de colunas de revestimentos. Rio de Janeiro: Interciência/Petrobrás, 2007.
- ROCHA, C.A.A., 2011, Influência dos cloretos de sódio e de potássio e da pressão e temperatura de cura no comportamento físico-químico e mecânico de pastas para cimentação de poços de petróleo. Exame de qualificação ao doutorado, PEC/COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

- RODRIGUES, C.S., 2004, Efeito da adição de cinza de casca de arroz no comportamento de compósitos cimentícios reforçados por polpa de bambu. Tese de Doutorado, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
- SANTOS, F.A.; QUEIRÓZ, J.H.; COLODETTE, J.L.; FERNANDES, S.A.; GUIMARÃES, V.M.; REZENDE, S.T. –Potencial da palha de cana-de-açúcar para produção de etanol", **Química Nova**, v. 35, n. 5, p.1004-1010, Jan. 2012.
- SCHRAMM, G, Reologia e reometria: fundamentos teóricos e práticos, Tradução e adaptação: MOTHÉ, C. G., CORREIA, D. Z., PETRI, H. M., GONÇALVES, M., CARESTIANO, T., 2 ed., Artliber Editora, São Paulo, 2006.
- SILVA, A.C., 2002, Estudo da durabilidade de compósitos reforçados com fibras de celulose. Dissertação de mestrado, Universidade de São Paulo, SP, Brasil.
- SILVA, F.A.; TOLEDO FILHO, R.D.; MELO FILHO, J.A.; FAIRBAIN, E.M.R.
 —Prysical and mechanical properties of durable sisal fiber-cement composites",
 Construction and Building Materials, v. 24, n. 5, p.777-785, Mai. 2010.
- SOUZA, J.G.G., 2005, Contribuição ao estudo das propriedades das argamassas de revestimento no estado fresco. Tese de doutorado, Universidade de Brasília, Brasília, DF, Brasil.
- TAM AIR. TAM AIR operating instructions [Manual do equipamento], 2014.
- TAYLOR, H. F. W., Cement Chemistry, 1 ed. London, Academic Press, 1990.
- TIPLER, P.A.; MOSCA, G. Física para Cientistas e Engenheiros, 6 ed. São Paulo, Editora LTC, 2009.
- TOLEDO FILHO, R.D., 1997, Materiais compósitos reforçados com fibras naturais: caracterização experimental. Tese de Doutorado, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
- TOLEDO FILHO, R.D.; SCRIVENER, K.; ENGLAND, G.L.; GHAVAMI, K. -Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites", Cement & Concrete Composites, v.22, n. 2, p.127-143, Abr. 2000.

- TOLEDO FILHO, R.D., GHAVAMI, K., ENGLAND, G.L., SCRIVENER, K.,
 -Development of vegetable fibre-mortar composites of improved durability".
 Cement & Concrete Composites, v. 25, n.2, p. 185-196, Fev. 2003.
- TOLEDO FILHO, R.D.; SILVA, F.A.; FAIRBAIN, E.M.R.; MELO FILHO, J.A.
 -Durability of compression molded sisal fiber reinforced mortar laminates", Construction and Building Materials, v. 23, n. 6, p.2409-2420, Jun. 2009.
- TONOLI, G.H.D., 2009, Fibras curtas de Eucalipto para novas tecnologias em fibrocimento. Tese de Doutorado, Universidade de São Paulo, SP, Brasil.
- TONOLI, G.H.D.; RODRIGUES FILHO, U.P.; SAVASTANO JR., H.; BRAS, J.; BELGACEM, M.N.; ROCCO LAHR, F.A. –Cellulose modified fibres in cement based composites", Composites: Part A, v.40, n.12, p.2046-2053, 2009.
- TONOLI, G.H.D.; SANTOS, S.F.; JOAQUIM, A.P.; SAVASTANO JR., H. –Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre", Construction and Building Materials, v. 24, n. 2, p.193-201, Fev. 2010.
- TORRENTI, J-M., -La résistance du béton au très jeune âge". Bulletin de Liaison des LPC, n. 179, p. 31-41, 1992.
- VITORINO, F.C., 2012, Caracterização experimental de pastas cimentícias contendo polímero SBR em pó e microfibras de volastonita. Dissertação de mestrado, COPPE /UFRJ, RJ, Brasil.
- VORKINN, P. B., SANDERS, G. S.-Cement Slurry Qualification, Field Mixing, and Quality Assurance Procedures for Coiled-Tubing Squeeze Operations in Prudhoe Bay", In: Western Regional Meeting, SPE 26089, Anchorage, Alaska, U.S.A., 26-28 May, 1993.
 - WALLIS, A.; WEARNE, R. WRIGHT, P., -Chemical analysis of polysaccharides in plantation eucalypt woods and pulps". Appita Journal, v.49, n.4, p.258-262, 1996.
 - WASTOWSKI, A.D., Apostila de aula do curso de Química da Madeira, Rio Grande do Sul: Universidade Federal de Santa Maria – Departamento de Engenharia Florestal, 2009. Disponível em: http://dc436.4shared.com/doc/3WNP1hLU/preview .html> - Acesso em: 22 mar. 2014.

- ZHANG, J.; QIN, L.; LI, Z. –Hydration monitoring of cement-based materials with resistivity and ultrasonic methods", Materials and Structures, v. 42, n. 1, p. 15-24, Jan. 2009.
- ZHANG, L.; CATALAN, L.J.J.; BALEC, R.J.; LARSEN, A.C.; ESMAEILI, H.H.; KINRADE, S.D. –Effects of saccharide set retarders on the hydration of ordinary portland cement and pure tricalcium silicate", Journal of the American Ceramic Society, v. 93, n. 1, p.279-287, 2010.

7. ANEXO A

7.1 Propriedades Mecânicas das Pastas

7.1.1 Comportamento sob Compressão Uniaxial

As curvas de tensão versus deformação uniaxial de cada corpo-de-prova (CP) utilizado para o cálculo dos valores médios das pastas em estudo ensaiados aos 3 dias de idade sob compressão uniaxial, podem ser observadas na Figura 7.1 e na Figura 7.2.

Figura 7.1 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 3 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.2 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 3 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%.

As curvas de tensão versus deformação uniaxial de cada corpo-de-prova (CP) utilizado para o cálculo dos valores médios das pastas em estudo ensaiados aos 7 dias de idade sob compressão uniaxial, podem ser observadas na Figura 7.3 e na Figura 7.4.

Figura 7.3 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 7 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.4 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 7 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%.

As curvas de tensão versus deformação uniaxial, deformação lateral e deformação volumétrica de cada corpo-de-prova (CP) utilizadas para o cálculo dos valores médios das pastas em estudo ensaiados aos 28 dias de idade sob compressão uniaxial, podem ser observadas na Figura 7.5 e na Figura 7.6.

Figura 7.5 – Curvas tensão versus deformação uniaxial, deformação lateral e volumétrica de cada corpo-de-prova ensaiado aos 28 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.6 – Curvas tensão versus deformação uniaxial, deformação lateral e volumétrica de cada corpo-de-prova ensaiado aos 28 dias de idade para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%.

As curvas de tensão versus deformação uniaxial de cada corpo-de-prova (CP) utilizado para o cálculo dos valores médios das pastas em estudo ensaiados aos 90 dias de idade sob compressão uniaxial, podem ser observadas na Figura 7.7 e na Figura 7.8.

Figura 7.7 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 90 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.8 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 90 dias de idade para as pastas: (a) PI 0,50% e (b) PI 1,0%.

As curvas de tensão versus deformação uniaxial de cada corpo-de-prova (CP) utilizado para o cálculo dos valores médios das pastas contendo fibras de eucalipto ensaiados aos 180 dias de idade sob compressão uniaxial, podem ser observadas na Figura 7.9.

Figura 7.9 – Curvas tensão versus deformação uniaxial de cada corpo-de-prova ensaiado aos 180 dias de idade para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

7.1.1.1 Modo de Ruptura

Os corpos-de-prova rompidos aos 7, 28, 90 e 180 dias de idade dos traços com fibras de eucalipto, com fibras de pinho e a referência são mostrados da Figura 7.10 a Figura 7.17.

REFERÊNCIA

EU 0,25%

EU 1,0%

EU 0,50%

Figura 7.10 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 7 dias.

Figura 7.11 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 7 dias.

Figura 7.12 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 28 dias.

155

Figura 7.13 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 28 dias.

REFERÊNCIA

EU 0,25%

EU 0,50%

EU 1,0%

Figura 7.14 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 90 dias.

Figura 7.15 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 90 dias.

Figura 7.16 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão uniaxial aos 180 dias.

Figura 7.17 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão uniaxial aos 180 dias.

7.1.2 Comportamento sob Compressão Triaxial

As curvas de tensão versus deformação axial de cada corpo-de-prova (CP) ensaiado sob compressão triaxial para as pastas estudadas, agrupadas por pressão de confinamento, podem ser observadas da Figura 7.18 a Figura 7.20.

Figura 7.18 - Curvas tensão versus deformação axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de pinho submetida a tensão de confinamento 4,14 MPa: (a) PI 0,25%; (b) PI 0,50%; e (c) PI 1,0%.

Figura 7.19 - Curvas tensão versus deformações axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de eucalipto submetida a tensão de confinamento 8,28 MPa: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.20 - Curvas tensão versus deformação axial de cada corpo-de-prova ensaiado para as pasta contendo fibras de pinho submetida a tensão de confinamento 8,28 MPa: (a) PI 0,25%; e (b) PI 1,0%.

7.1.2.1 Modo de Ruptura

Os modos de ruptura dos corpos-de-prova ensaiados sem pressão de confinamento para as pastas estudadas podem ser observados na Figura 7.21 e na Figura 7.22. Já os modos de ruptura das pastas para a pressão de 8,28 MPa podem ser observados na Figura 7.23 e na Figura 7.24.

Figura 7.21 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial sem confinamento.

Figura 7.22 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial sem confinamento.

REFERÊNCIA

EU 0,25%

Figura 7.23 – Modo de ruptura das misturas com fibras de eucalipto e a referência no ensaio de compressão triaxial com confinamento de 8,28 MPa.

EU 0,50%

EU 1,0%

Figura 7.24 – Modo de ruptura das misturas com fibras de pinho no ensaio de compressão triaxial com confinamento de 8,28 MPa.

7.1.3 Comportamento sob Flexão

As curvas de carga versus deslocamento de cada corpo-de-prova (CP) utilizado para o cálculo dos valores médios das pastas em estudo podem ser observadas na Figura 7.25 e na Figura 7.26.

Figura 7.25 – Curvas carga (força) versus deslocamento de cada corpo-de-prova ensaiado aos para as pastas: (a) REF; (b) EU 0,25%; (c) EU 0,50% e (d) EU 1,0%.

Figura 7.26 – Curvas carga (força) versus deslocamento de cada corpo-de-prova ensaiado aos para as pastas: (a) PI 0,25%; (b) PI 0,50% e (c) PI 1,0%.

8. ANEXO B

8.1 Análises de Variância

A seguir, serão mostradas as análises de variância realizadas para os diversos dados obtidos neste trabalho. No campo *Sig* o valor 1 significa que o resultado de comparação foi significativamente diferente e 0 significa que o resultado não foi significativamente diferente.

8.1.1 Índice de Consistência – Espalhamento

Na Tabela 8.1 e na Tabela 8.2, são apresentados os resultados de ANOVA para os valores de espalhamento, tanto para as misturas contendo fibras de eucalipto quanto de pinho.

Tabela 8.1 - Análise de variância do parâmetro de espalhamento para as pastas contendo eucalipto.

		Samp	le Size	Mean	Standa	rd Deviation	SE of Me	ean				
	A		3	38,83333	1	0,76376	0,440	096				
	в		3	30,66667	'	0,28868	0,166	667				
(C		3	27,33333	1	0,28868	0,166	667				
[D		3	22,83333	1	0,28868	0,166	667				
	ne	Way	ANOV	A								
Ę	0	verall	ANOV	A								
			DF S	Sum of Squ	ares Me	an Square	F Value	Prob>F				
	N	lodel	3	41	0,75	136,91667	657,2	6,55311E-10				
		Error	8	1,6	6667	0,20833						
1		Total	11	412,4	1667							
+ - T	Al Al Fi M	ternative t the 0.05 it Stati leans	i Hypothe b level, the istics Compa	sis: The mean: e population m AriSONS	s of one or m eans are signi	ore levels are d ificantly differe	ifferent nt.					
	딘	тике	y resi									
	11				MoonDiff	OEM .	a Volue	Broh	Alpha	Cia		
			ELLO 2	5% DEE	MeanDiff 9 16667	SEM 0.27269	q Value	Prob	Alpha 0.1	Sig	LCL 0.17705	UCL
			EU 0,2	5% REF	MeanDiff -8,16667	SEM 0,37268	q Value 30,99032	Prob 0	Alpha 0,1	Sig 1	LCL -9,17705	UCL -7,15628
		FUO	EU 0,2 EU 0,5	5% REF 0% REF	MeanDiff -8,16667 -11,5	SEM 0,37268 0,37268	q Value 30,99032 43,63943 12,64911	Prob 0 8 98359E-5	Alpha 0,1 0,1	Sig 1 1	LCL -9,17705 -12,51039 -4 34372	UCL -7,15628 -10,48961 -2,32295
		EU 0	EU 0,2 EU 0,5 ,50% E	5% REF 0% REF U 0,25%	MeanDiff -8,16667 -11,5 -3,33333 -16	SEM 0,37268 0,37268 0,37268 0,37268	q Value 30,99032 43,63943 12,64911 60,71573	Prob 0 0 8,98359E-5 0	Alpha 0,1 0,1 0,1 0,1	Sig 1 1 1	LCL -9,17705 -12,51039 -4,34372 -17,01039	UCL -7,15628 -10,48961 -2,32295 -14,98961
		EU 0	EU 0,2 EU 0,5 ,50% E EU 1, 1,0% E	5% REF 0% REF U 0,25% 0% REF U 0,25%	MeanDiff -8,16667 -11,5 -3,33333 -16 -7,83333	SEM 0,37268 0,37268 0,37268 0,37268 0,37268	q Value 30,99032 43,63943 12,64911 60,71573 29,72541	Prob 0 8,98359E-5 0 1.3394E-8	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 1 1	LCL -9,17705 -12,51039 -4,34372 -17,01039 -8,84372	UCL -7,15628 -10,48961 -2,32295 -14,98961 -6,82295
		EU 0 EU EU	EU 0,2 EU 0,5 ,50% E EU 1, 1,0% E 1,0% E	5% REF 0% REF U 0,25% 0% REF U 0,25% U 0,50%	MeanDiff -8,16667 -11,5 -3,33333 -16 -7,83333 -4,5	SEM 0,37268 0,37268 0,37268 0,37268 0,37268 0,37268	q Value 30,99032 43,63943 12,64911 60,71573 29,72541 17,0763	Prob 0 8,98359E-5 0 1,3394E-8 9,45365E-6	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 1 1 1	LCL -9,17705 -12,51039 -4,34372 -17,01039 -8,84372 -5,51039	UCL -7,15628 -10,48961 -2,32295 -14,98961 -6,82295 -3,48961

Tabela 8.2 - Análise de variância do parâmetro de espalhamento para as pastas contendo

pinho.

8.1.2 Propriedades Mecânicas

8.1.2.1 Comportamento sob Compressão Uniaxial

A seguir, da Tabela 8.3 à Tabela 8.32 os resultados de ANOVA para os parâmetros de resistência à compressão (f_{c_RUP}), deformação de pico (ϵ_u), módulo de elasticidade (E_c) e coeficiente de Poisson (ν) são apresentados para as cinco idades de ensaio (3, 7, 28, 90 e 180 dias).

Tabela 8.3 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de eucalipto aos 3 dias de idade.

-	onpure	Sample Size	Mean	Standard	Deviation	SE of Mean				
Ref	erência	3	21 7252	4	0 106	0.0612				
FU	0.25%	3	23.5	۰ ۹	0.44238	0 25541				
FU	10.50%	5	22 8277	1	0 39952	0 17867				
F	U 1 0%	5	18 447	В	0.22438	0 10035				
000	May A		,		0,22100	0,10000				
	verall A	NOVA								
Πř			uares M	ean Square	E Value	Proh>F				
N	lodel	3 684	17442	22 82481	218 4659	5 9.83243E-1	1			
	Error	12 1.2	25373	0.10448			-			
14	Total	15 69,7	2815				-			
N	ull Hypothe	sis: The means of a	I levels are e	equal			_			
A	Iternative H	lypothesis: The mea	ns of one or	more levels are d	ifferent					
At	t the 0.05 k	evel, the population r	neans are sig	nificantly differe	nt.					
+ F	it Statis	tics								
	leans C	omparisons								
Ē	Tukey	Test								
			MeanDi	iff SEM	q Value	Prob	Alpha	Sig	LCL	UCL
	EU 0,2	5% Referência	1,8647	6 0,26392	9,99243	6,71157E-5	0,1	1	1,18907	2,54044
	EU 0,5	0% Referência	1,1024	7 0,23605	6,60494	0,00263	0,1	1	0,49811	1,70682
14-	EU 0,	50% EU 0,25%	-0,7622	9 0,23605	4,56693	0,0318	0,1	1	-1,36664	-0,15794
	EU 1,	0% Referência	-3,2774	4 0,23605	19,63537	0	0,1	1	-3,88179	-2,67309
	EU 1	1,0% EU 0,25%	-5,142	2 0,23605	30,80724	0	0,1	1	-5,74655	-4,53785
	EU 1	1,0% EU 0,50%	-4,3799	0,20443	30,29969	0	0,1	1	-4,90329	-3,85652
Si	ig equals 1	indicates that the me	eans differen	ce is significant a	at the 0,1 level.					
1 -										

Tabela 8.4 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de pinho aos 3 dias de idade.

	N	otos											
E	10	out Data											
+		pul Dala od Doto (aina waluta	-1 1/4		a that are	involid on	d fburg mot up	ad in an		otiona	
+	В	ad Dala (i	mis	sing value	s) Va	aiue	s triat are	invalid and	i thus not us	ea in co	mpu	auons	
臣		escriptive	Sta	atistics									
			Sa	ample Size	Mea	in	Standard	Deviation	SE of Mean				
IL	ŀ	Referencia		3	21,72	524		0,106	0,0612				
		PI 0,25%		4	22,65	191		0,33345	0,16673				
		PI 0,50%		5	21,78	689		0,37622	0,16825				
		PI 1,0%		5	18,09	872		0,71816	0,32117				
P	0	ne Way A	NVC	OVA									
	P	Overall A	NC	0VA									
		[DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>F				
		Model	3	57,	48799		19,16266	83,44953	9,55953E-9				
		Error	13	2,	98521		0,22963						
	1-	Total	16	60,4	47321								
		Null Hypothe	esis:	The means of a	ill levels a	are equ	ual						
		Alternative H	lypo	thesis: The mea	ns of one	e or mo	ore levels are o	different					
		At the 0.05 I	evel,	the population	means are	e signi	ficantly differe	ant.					
	+	Fit Statis	tics										
IL	P	Means C	om	parisons									
		🛛 Tukey	Те	st									
					Mean	Diff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
		PI 0,25	5%	Referência	0,92	666	0,36599	3,58066	0,10105	0,1	0	-0,00224	1,85557
		PI 0,50)%	Referência	0,06	164	0,34996	0,24911	0,99796	0,1	0	-0,82656	0,94985
	ΙL	PI 0,	50%	6 PI 0,25%	-0,86	502	0,32146	3,80556	0,07688	0,1	1	-1,68089	-0,04915
		PI 1,0)%	Referência	-3,62	652	0,34996	14,65514	5,70076E-7	0,1	1	-4,51473	-2,73832
		PI 1	1,0%	6 PI 0,25%	-4,55	319	0,32146	20,03125	0	0,1	1	-5,36905	-3,73732
		PI 1	1,0%	6 PI 0,50%	-3,68	817	0,30307	17,20995	8,58285E-8	0,1	1	-4,45737	-2,91896
		Sig equals 1	indic	ates that the m	eans diffe	erence	is significant	at the 0.1 level.					
		Sig equals 0	indic	ates that the m	eans diffe	erence	is not signific	ant at the 0,1 le	vel.				
1	1												

Tabela 8.5 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de eucalipto aos 7 dias de idade.

_			1										
+	Ν	otes											
+	In	put Data											
+	Ba	ad Data (mis	sing values	s) Va	alues	s that are	invalid and	d thus not u	ised in	comp	utations	
F	D	escriptive	Sta	atistics									
			S	ample Size	Mea	n	Standard	Deviation	SE of Mean				
	R	Referência		3	40,05	968		0,7115	0,41078				
1		EU 0,25%		4	40,77	911		0,34833	0,17417				
		EU 0,50%		4	39,64	503		0,46583	0,23291				
		EU 1,0%		5	34,41	492		0,72288	0,32328				
Ē	0	ne Way A	N C	OVA									
	Ę	Overall A	NC	OVA									
		[DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>F				
		Model	3	116,4	49614		38,83205	113,166	4,57463E-9)			
		Error	12	4,1	11771		0,34314						
1		Total	15	120,6	61385								
		Null Hypothe	esis:	The means of a	ll levels a	are equ	al						
		Alternative H	Туро	thesis: The mea	ns of one	e or mo	re levels are d	ifferent					
		At the 0.05 I	evel,	the population r	neans an	e signit	ficantly differe	nt.					
	+	Fit Statis	tics	1									
ΙL	₽.	Means C	om	parisons									
		🛛 Tukey	Te	est									
					Mea	nDiff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
		EU 0,2	25%	Referência	0,7	1942	0,4474	2,27407	7 0,41042	0,1	0	-0,42602	1,86487
		EU 0,5	50%	Referência	-0,4	1465	0,4474	1,3107	7 0,79135	0,1	0	-1,5601	0,73079
	4	EU 0,	509	6 EU 0,25%	-1,13	3408	0,41421	3,872	2 0,07424	0,1	1	-2,19455	-0,0736
		EU 1	,0%	Referência	-5,6	4476	0,4278	18,66052	2 0	0,1	1	-6,74001	-4,54951
		EU ·	1,09	6 EU 0,25%	-6,3	6418	0,39296	22,90415	5 0	0,1	1	-7,37024	-5,35813
		EU '	1,09	6 EU 0,50%	-5,2	3011	0,39296	18,82271	1 0	0,1	1	-6,23616	-4,22405
		Sig equals 1	indic	ates that the me	eans diff	erence	is significant a	at the 0,1 level					
		Sig equals 0	indic	ates that the me	eans diff	erence	is not significa	ant at the 0,1 le	evel.				

Tabela 8.6 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de pinho aos 7 dias de idade.

F /	Notes	-										
F I	Innut Da	ta										
FI /	Rad Data	a (mis	sing value:	s) Va	lues tha	t are	invalid and	d thus not	used in	com	outations	
- 1	Descripti	ve St	atistics	<i>,</i>	1000 1110	c are	in and an	1 1100 1101		00111	Jatationio	
Гг		S	ample Size	Mear	n Sta	ndard	Deviation	SE of Mear	1			
	Referênc	ia	. 3	40,059	968		0,7115	0,4107	в			
Ч	PI 0,25	%	4	40,05	521		0,71062	0,3553	1			
	PI 0,50	%	5	40,040	069		0,28051	0,1254	5			
	PI 1,0	%	4	33,488	397		0,71677	0,3583	9			
	One Waj	ANC	OVA									
E	Overal	I ANC	DVA 🛛									
		DF	Sum of Sq	uares	Mean Sq	uare	F Value	Prob>	·F			
	Model	3	129	,1122	43,	0374	117,8190	6 3,62346	6E-9			
	Error	12	4,	38341	0,3	6528						
	Total	15	133,	49561								
9	Null Hyp Alternativ At the 0.1	othesis: re Hypo)5 level, <i>tistics</i>	The means of a thesis: The mea the population	all levels ar ins of one (means are	re equal or more leve significantly	els are d γ differe	lifferent ent.					
9	Null Hyp Alternativ At the 0.1	othesis: re Hypo 05 level, tistics 6 Com	The means of a thesis: The mea the population parisons	all levels ar ins of one (means are	re equal or more leve significantly	els are d y differe	lifferent ent.	1				
9	Null Hyp Alternativ At the 0.1	othesis: Te Hypo D5 level, tistics Com ey Te	The means of a thesis: The mea the population parisons est	all levels ar ins of one (means are	re equal or more leve significantly	els are d y differe	lifferent ent.					
-	Null Hyp Alternativ At the 0.1	othesis: Te Hypo D5 level, tistics Com ey Te	The means of a thesis: The mea the population parisons est	all levels ar ins of one (means are MeanD	re equal or more leve significantly	els are d y differe EM	ifferent ent. q Value	Prob	Alpha	Sig	LCL	UCL
9	Null Hyp Alternativ At the 0.1	othesis: Te Hypo 5 level, tistics Com ey Te ,25%	The means of a thesis: The mea the population parisons est Referência	MeanD -0,007	e equal or more leve significantly Diff SI 59 0,40	els are d y differe EM 6161	lifferent ent. q Value 0,02325	Prob 1	Alpha 0,1	Sig 0	LCL -1,18941	UCL 1,17423
	Null Hyp Alternativ At the 0.1	othesis: re Hypo 05 level, tistics Com ey Te ,25% ,50%	The means of a thesis: The mea the population parisons est Referência Referência	MeanD -0,007	Diff SI 59 0,40	els are d y differe EM 6161 4138	rt. nt. q Value 0,02325 0,06085	Prob 1 0,99997	Alpha 0,1 0,1	Sig 0	LCL -1,18941 -1,14903	UCL 1,17423 1,11105
	Null Hyp Alternativ At the 0.1	othesis: re Hypo 05 level, tistics com ey Te ,25% ,50% 0,50%	The means of a thesis: The mean the population parisons est Referência Referência 6 PI 0,25%	MeanC -0,007 -0,018	re equal or more level significantly Diff SI 59 0,44 14 0,40	els are d y differe EM 6161 4138 0544	q Value 0,02325 0,06085 0,03978	Prob 1 0,99997 0,99999	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -1,18941 -1,14903 -1,04941	UCL 1,17423 1,11105 1,0266
	Null Hyp Alternativ At the 0.1	e Hypo 5 level, tistics Com 25% ,25% ,50% 0,50% 1,0%	The means of a thesis: The mean the population parisons st Referência Referência Referência Constantion Referência	MeanE -0,007 -0,018 -0,010 -0,018	re equal or more level significantly 0 59 0,44 14 0,40 71 0,42	els are d y differe 6161 4138 0544 6161	q Value 0,02325 0,06085 0,03978 20,13047	Prob 1 0,99997 0,99999 0	Alpha 0,1 0,1 0,1	Sig 0 0 0	LCL -1,18941 -1,14903 -1,04941 -7,75253	UCL 1,17423 1,11105 1,0266 -5,38889
	Null Hyp Alternativ At the 0.1	25% ,50% 0,50% 0,50% 1,0% 0,10% 0,0% 0	The means of a thesis: The mea the population parisons est Referência Referência 6 PI 0,25% Referência 6 PI 0,25%	MeanE -0,007 -0,018 -0,570 -6,563	Strength Strength Diff Strength 59 0.44 99 0.44 14 0.40 13 0.42	els are d y differe 6161 4138 0544 6161 2737	q Value 0,02325 0,06085 0,03978 20,13047 21,71828	Prob 1 0,99997 0,99999 0 0	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 0 1 1	LCL -1,18941 -1,14903 -1,04941 -7,75253 -7,65728	UCL 1,17423 1,11105 1,0266 -5,38889 -5,46897

Tabela 8.7 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de eucalipto aos 28 dias de idade.

∃ De	escriptive	Statistics	-								
		Sample Siz	e Mo	ean	Standard	Deviation	SE of Mear	١			
R	eferência		3 62,2	9532		1,27036	0,7334	4			
E	EU 0,25%		3 61,7	2441		3,0841	1,7806	1			
E	EU 0,50%		3 57,8	8751		1,99521	1,1519	3			
	EU 1,0%		3 53,0	4084		0,75497	0,4358	3			
	ne Way I	ANOVA									
Ę	Overall A	ANOVA									
		DF Sum of	Squares	Mea	n Square	F Value	Prob>F				
	Model	3 16	4,26242	2	54,75414	13,97117	0,00152				
ШЦ	Error	8 3	1,35265	i	3,91908						
[Total	11 19	5,61507								
	Null Hypoth	esis: The means	of all level	s are equ	al						
	Alternative	Hypothesis: The r level, the nonulati	neans of o	ne or mo are cinnif	re levels are di icanthy differe	ifferent nt					
	Eit Statie	tion									
±.	Fil Sidis	auco Comporisona									
ЧŤг		Tost)								
1		1831	Ma	onDiff	0EM	a Voluo	Broh	Alpho	Qia		
	ELLO?	25% Doforôn	via 0	67001	1 61620	Q 4005	0.0020	Alpha	oig	4.0522	2 01127
	EU 0,	50% Referên	na -u,	40781	1,01039	3 85648	0,9030	0,1	1	-4,9002	-0.02553
	ELLO	50% ELL0 28	06 -1	2 2260	1,01033	3,05040	0,0370	0,1	0	-0,73003	0.54530
14	EU I	0% Referên	ria _0	25448	1,61639	8 09693	0.00197	0,1	1	-13 63677	-4 8722
	FU	10% EU 0.25	······································	68357	1 61639	7 59743	0.00296	0.1	1	-13 06585	-4 30129
	EU	1.0% EU 0.50	% -4.	84667	1,61639	4,24045	0.06666	0,1	1	-9,22896	-0.46439
		.,				.,	-,	-,.		-,	.,
	Sig equals 1 Sig equals (indicates that the indicates that the	means di means di	fference fference	is significant a is not significa	it the 0,1 level int at the 0.1 k	vel				
	ora eduara e	menoarce mar me	. means di		is not significa	and an one of the					

Tabela 8.8 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de pinho aos 28 dias de idade.

Ę	De	scriptive	Statistics								
			Sample Size	Mean	Standard	Deviation	SE of Mean				
	Re	ferência	3	62,2953	2	1,27036	0,73344				
	F	PI 0,25%	4	67,4774	2	0,71432	0,35716				
	ł	PI 0,50%	4	64,8320	4	1,52967	0,76483				
		PI 1,0%	3	58,3829	9	0,8208	0,47389				
Ę	On	e Way A	NOVA								
	Ę (Overall A	NOVA								
		[OF Sum of Sq	uares 🛛 🕅	lean Square	F Value	Prob>F]			
		Model	3 152,	91296	50,97099	38,83374	8,07634E-6				
		Error	10 13,	12544	1,31254]			
		Total	13 166	,0384							
		Null Hypothe	esis: The means of a	II levels are	equal						
		Alternative H	lypothesis: The mea	ns of one or	more levels are	different					
		At the 0.00 i	ever, the population	means are s	gnincanuy unier	ent.					
	+ /	-It Statis	liCS								
14		neans c	omparisons								
	15	Тикеу	Test	11		- M-los	Deale	Alaba	0.	1.01	
				MeanDr	T SEM	q value	Prob	Alpha	Sig	LCL	UCL
		PI 0,25	% Referencia	5,182	1 0,87501	8,37539	7,04408E-4	0,1	1	2,89028	7,47392
		PI 0,50	% Referencia	2,5367	2 0,87501	4,09989	0,06447	0,1	1	0,2449	4,82854
	Ч	PI 0,	50% PI 0,25%	-2,6453	8 0,81011	4,61808	0,03602	0,1	1	-4,76719	-0,52357
		PI 1,0)% Referência	-3,9123	3 0,93543	5,91479	0,00853	0,1	1	-6,36239	-1,46227
		PI 1	1,0% PI 0,25%	-9,0944	3 0,87501	14,69857	5,51343E-6	0,1	1	-11,38625	-6,80261
		PI 1	1,0% PI 0,50%	-6,4490	5 0,87501	10,42307	1,17638E-4	0,1	1	-8,74087	-4,15723
		Sig equals 1	indicates that the m	eans differe	ice is significant	at the 0,1 level					
		Sig equals 0	indicates that the m	eans differe	ice is not signific	ant at the 0,1 le	evel.				

Tabela 8.9 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de eucalipto aos 90 dias de idade.

			Sa	mple Size	Mea	an	Standard	Deviation	SE of Mea	n			
R	efe	rência		3	69.78	617		3.36974	1.9455	2			
-	EU	0,25%		3	68,37	172		1,34074	0,7740	8			
E	EU	0,50%		3	65,97	511		2,30438	1,3304	4			
	EU	J 1,0%		5	62,2	769		2,27093	1,0155	9			
0	ne	Way A	ANO	VA									
Ę	Ov	erall A	NO	VA									
			DF	Sum of Sq	uares	Mea	n Square	F Value	Prob>F				
	M	odel	3	129	,1866		43,0622	7,48202	0,00649				
	E	Error	10	57,5	55427		5,75543						
	٦	Fotal	13	186,	74087								
	Nu	ll Hypoth	esis: T	he means of a	ll levels :	are equi	al						
	Alte	ernative I	lypoth	esis: The mea	ns of one	e or mo	re levels are di	fferent					
	At	the 0.05	evel, t	the population i	neans ar	e signir	icantiy differen	nt.					
+	Fit	Statis	tics										
49,	M	eans (omp	parisons									
	Ξ.	Tukey	Tes	st									
					Mea	nDiff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
		EU 0,2	25%	Referência	-1,4	1445	1,95881	1,0212	0,88609	0,1	0	-6,54494	3,71603
		EU 0,5	50%	Referência	-3,8	1106	1,95881	2,75149	0,27009	0,1	0	-8,94155	1,31942
14		EU 0	50%	EU 0,25%	-2,3	9661	1,95881	1,73029	0,627	0,1	0	-7,5271	2,73387
		EU 1	,0%	Referência	-7,5	0928	1,75202	6,06143	0,00728	0,1	1	-12,09812	-2,92043
		EU	1,0%	EU 0,25%	-6,0	9483	1,75202	4,9197	0,02566	0,1	1	-10,68367	-1,50598
		EU	1,0%	EU 0,50%	-3,6	9822	1,75202	2,98517	0,21431	0,1	0	-8,28706	0,89063
	Sig	equals 1	indica	ites that the m	eans diff	erence	is significant a	t the 0,1 level					

Tabela 8.10 - Análise de variância do parâmetro resistência à compressão uniaxial para as pastas contendo fibras de pinho aos 90 dias de idade.

F	D	escriptiv	/e Sta	atistics									
			S	ample Size	Mea	an	Standard	Deviation	SE of Mea	an			
L	F	Referênci	а	3	69,78	617		3,36974	1,945	52			
		PI 0,509	6	3	69,24	167		0,88609	0,511	58			
		PI 1,09	6	4	65,84	436		0,87096	0,435	48			
Ę	0	ne Way	ANC	OVA									
	F	Overall	ANC	DVA									
			DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>F]			
		Model	2	32	2,7624		16,3812	4,31794	0,06004				
		Error	7	26,	55629		3,79376						
		Total	9	59,	31868								
	÷	Null Hypo Alternative At the 0.0 Fit Stat	othesis: e Hypo 5 level, t <i>iStiCs</i>	The means of a thesis: The mea , the population	all levels : ans of one means ar	are equ e or mo e not s	ial ore levels are o ignificantly dif	lifferent ferent.					
	Ę	Means	Con	parisons									
		🗄 Tuke	ey Te	est									
					Mean	Diff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
		L PI 0,	50%	Referência	-0,54	451	1,59034	0,4842	0,93799	0,1	0	-4,42547	3,33646
		PI 1	1,0%	Referência	-3,94	182	1,48762	3,7473	0,07494	0,1	1	-7,57212	-0,31151
		F	PI 1,09	6 PI 0,50%	-3,39	731	1,48762	3,22966	0,12403	0,1	0	-7,02762	0,233
		Sig equals Sig equals	s 1 indio s 0 indio	cates that the m	eans diff eans diff	erence erence	is significant is not signific	at the 0,1 leve ant at the 0,1 l	l. evel.				

Tabela 8.11 - Análise de variância do parâmetro resistência à compressão uniaxial para aspastas contendo fibras de eucalipto aos 180 dias de idade.

		S	ample Size	Mea	an 🕴	Standard I	Deviation	SE of Mean				
F	Referênci	а	3	74,5	769		1,56891	0,90581				
	EU 0,259	6	3	68,29	238		1,31998	0,76209				
	EU 0,509	6	4	67,53	517		1,35069	0,67534				
	EU 1,09	6	3	62,40	627		0,92064	0,53153				
0	Dne Way	ANC	OVA									
P	Overall	ANC	OVA									
		DF	Sum of Sq	Jares	Mean	Square	F Value	Prob>F				
	Model	3	224,4	5911		74,8197	43,23208	1,13691E-5				
L	Error	9	15,5	57587		1,73065						
-	Total Null Hypo Alternative At the 0.0	12 thesis: Hypo 5 level,	240,0 The means of a thesis: The mean the population r)3498 Il levels a ns of one neans are	are equal e or more e significa	levels are di antly differe	fferent nt.					
± ⊑ T	Total Null Hypo Alternative At the 0.0 Fit Stat Means	12 thesis: Hypo 5 level, istics Com	240,0 The means of a thesis: The mean the population r parisons)3498 Il levels a ns of one neans are	are equal e or more e signific:	levels are di antly differen	fferent nt.					
+	Total Null Hypo Alternative At the 0.0 Fit Stat Means	12 thesis: Hypo 5 level, istics Com cy Te	240,0 The means of a thesis: The mean the population r parisons est)3498 Il levels a ns of one means are	are equal e or more e signific:	levels are di antly differen	fferent ht.	Beeb	Alacha	0:-		
+	Total Null Hypo Alternative At the 0.0 Fit Stat Means	12 thesis: Hypo 5 level, istics Com ey Te	240,(The means of a thesis: The mean the population r parisons est	Mea	are equal e or more e significa	levels are di antly different SEM	fferent it.	Prob	Alpha	Sig	LCL	
+ 	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke EUC	12 thesis: Hypo 5 level, istics Com ey Te	240,0 The means of a thesis: The mean the population r parisons est Referência	Mea -6,4	are equal e or more e signific: anDiff 28452	levels are di antly different SEM 1,07414	fferent nt. q Value 8,2742	Prob 4 0,0011	Alpha 3 0,1	Sig 1	LCL -9,14121 0,71301	-3,42
+	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke EU C EU C	12 thesis: Hypo 5 level, istics Com y Te ,25%	240,0 The means of a thesis: The mean the population r parisons est Referência Referência	03498 Il levels a ns of one neans are <u>Mea</u> -6,2 -7,0	are equal e or more e significa anDiff 28452 04173	levels are di antly different SEM 1,07414 1,00476	fferent it. q Value 8,2742 9,9113	Prob 4 0,0011 1 2,969915- 7 0,9700	Alpha 3 0,1 4 0,1	Sig 1 1	LCL -9,14121 -9,71391 2,42920	-3,42 -4,36
÷	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke EU C EU EU EU	12 thesis: Hypo level, istics Com y Te ,25% 0,50% 0,50%	240,0 The means of a thesis: The mean the population r parisons est Referência Referência 6 EU 0,25%	Mea -6,2 -7,0 -0	are equal a or more e significa anDiff 28452 04173),7572 17063	levels are di antly differen SEM 1,07414 1,00476 1,00476	fferent it. q Value 8,2742 i 9,9113 i 1,0657 16,0220	Prob 4 0,0011 1 2,96991E- 7 0,8729	Alpha 3 0,1 4 0,1 5 0,1	Sig 1 1 0	LCL -9,14121 -9,71391 -3,42939 -15,02731	-3,42 -4,36 1,91
+	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke EU	12 thesis: a Hypo 5 level, istics Com y Te ,25% 0,50% 0,50% 1,0%	240,(The means of a thesis: The mean the population r parisons st Referência Referência 6 EU 0,25% Referência 6 EL 0,25%	13498 Il levels ans of one means are Mea -6,2 -7,0 -0,2 -12,7	are equal e or more e significa 28452 04173),7572 17063	levels are di antly differen 1,07414 1,00476 1,00476 1,07414	fferent nt. 9,9113 1,0657 16,0239 7,7496	 Prob 4 0,0011 1 2,96991E- 7 0,8729 1 5,97796E- 7 0,00-1 	Alpha 3 0,1 4 0,1 5 0,1 5 0,1 3 0,1	Sig 1 1 0 1	LCL -9,14121 -9,71391 -3,42939 -15,02731 -8,74279	-3,42 -4,36 1,91 -9,31
+	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke EU	12 thesis: a Hypo 5 level, istics Com ey Te ,25% 0,50% 0,50% 1,0% J 1,0% J 1,0%	240,(The means of a thesis: The mean the population r parisons st Referência Referência 6 EU 0,25% Referência 6 EU 0,25%	Mea -6,2 -7,0 -12, -5 -5	are equal e or more e significa 28452 04173 0,7572 17063 5,8861 5 1289	levels are di antly different 1,07414 1,00476 1,00476 1,07414 1,07414 1,07414	fferent it. 9,9113 1,0657 16,0239 7,7496 7,2188	Prob 4 0,0011 1 2,96991E- 7 0,8729 1 5,97796E- 7 0,001 8 0,0029	Alpha 3 0,1 4 0,1 5 0,1 5 0,1 3 0,1 3 0,1	Sig 1 1 1 1 1 1	LCL -9,14121 -9,71391 -3,42939 -15,02731 -8,74279 -7,80108	UC -3,42 -4,36 1,91 -9,31 -3,02 -2 45

Tabela 8.12 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de eucalipto aos 3 dias de idade.

		npure	Sa	imple Size	Me	an	Standar	d Devi	ation	SE (of Me	an				
R	efei	rência		3	4792	66359		335,0	0228	193	3,413	65				
E	EU (0,25%		3	4443	25295		431,3	3197	249	9,029	63				
E	EU (0,50%		5	6024,	93689		549,9	6264	245	5,950	77				
	EU	1,0%		5	5731,	79208		485,5	2211	217	7,132	09				
0	ne	Way J	ANC	VA												
	Ov	erall /	ANO	VA												
[DF	Sum of Squ	lares	Mean	Square	F Va	lue	Prob>	⊳F					
	Мо	odel	3	6,355	31E6	2,1	1844E6	9,24	464	0,001	91					
Ш	E	rror	12	2,749	31E6	229109	9,17611									
	T	otal	15	9,104	62E6											
	Nul	Hypoth	iesis:	The means of a	l levels a	are equal										
	Alte At t	he 0.05	Hypot level.	hesis: The mear the population n	ns of one neans an	e or more le e significan	vels are dif tlv differen	terent								
	E it	Stati	etioe													
	Me	Sidii ane (nuo nom	narisons												
١Ťr		Tuko		et												
Ш	Ĭг	Tuncj	110	51	Me	anDiff	SEL	A	d Va	lue	Pro	h	Alnha	Sig	LCI	UCI
		EU 0.:	25%	Referência	-34	9.41064	390.81	895	1.26	437	0.8	081	0.1	0	-1349.99468	651.17341
		EU 0.	50%	Referência	12	32.2733	349,55	5909	4,98	542	0.018	894	0.1	1	337,32372	2127,22288
Ш	Ч	EU 0	,50%	5 EU 0,25%	158	1,68394	349,55	909	6,39	903	0,003	336	0,1	1	686,73436	2476,63351
		EU 1	1,0%	Referência	93	39,1285	349,55	5909	3,79	944	0,080	096	0,1	1	44,17892	1834,07807
		EU	1,0%	5 EU 0,25%	128	8,53913	349,55	909	5,21	305	0,014	428	0,1	1	393,58955	2183,48871
		EU	1,0%	5 EU 0,50%	-29	3,14481	302,72	2706	1,36	945	0,769	945	0,1	0	-1068,19387	481,90426
'	Sig	equals 1	l indic	ates that the me	ans diff	erence is si	gnificant at	the 0,1	level.							
1	Sin	equale () indic	ates that the me	ans diff	erence is n	ot significar	nt at the	0.1 lev	al						

Tabela 8.13 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de pinho aos 3 dias de idade.

	ompure	Sample Size	Mean	Standard [)eviation	SE of Mean					
Ref	ferência	3	4792 66359	33	5 00228	193 41365					
P	10.25%	4	6130.32115	29	5.95668	147,97834	_				
Р	10.50%	5	7530,5924	34	1.55516	152,74811	-				
- 1	PI 1,0%	5	5961,99022	18	0,07051	80,52998					
One	e Wav A	ANOVA					-				
ΞO	verall A	NOVA									
		DF Sum of Sq	uares Mea	n Square 🛛 F	Value	Prob>F					
N	Model	3 1,504	424E7 5,	01412E6 60),15661	7,03665E-8					
	Error	13 1,083	357E6 833	1,18273							
	Total	16 1,612	259E7								
N	lull Hypoth	esis: The means of a -hypothesis: The mea	Il levels are equa	l a lavals ara diffor	ent						
Â	t the 0.05	evel, the population	means are signifi	antly different.	ent						
F F	it Statis	tics									
Ģ M	leans (Comparisons									
Ē	Tukey	Test									
	<u> </u>										
			MeanDiff	SEM	q Valu	ie Pro	b A	Alpha	Sig	LCL	UCL
	PI 0,2	5% Referência	MeanDiff 1337,6575	SEM 6 220,5028	q Valu 9 8,579	ie Pro 18 2,0521	b / 7E-4	Alpha 0,1	Sig 1	LCL 778,0136	UCL 1897,30152
	PI 0,2	5% Referência 0% Referência	MeanDiff 1337,6575 2737,9288	SEM 6 220,5028 1 210,8410	q Valu 9 8,579 9 18,364	le Pro 18 2,0521 62 1,2169	b / 7E-4 8E-8	Alpha 0,1 0,1	Sig 1 1	LCL 778,0136 2202,80684	UCL 1897,30152 3273,05079
	PI 0,2 PI 0,5 PI 0	5% Referência 0% Referência 50% PI 0,25%	MeanDiff 1337,6575 2737,9288 1400,2712	SEM 6 220,5028 1 210,8410 5 193,6699	q Valu 9 8,579 9 18,364 1 10,225	le Pro 018 2,0521 062 1,2169 004 3,4753	b / 7E-4 8E-8 6E-5	Alpha 0,1 0,1 0,1	Sig 1 1 1	1778,0136 2202,80684 908,73033	UCL 1897,30152 3273,05079 1891,81217
	PI 0,2 PI 0,5 PI 0 PI 0	5% Referência 0% Referência 50% PI 0,25% 0% Referência	MeanDiff 1337,6575 2737,9288 1400,2712 1169,3266	SEM 6 220,5028 1 210,8410 5 193,6699 3 210,8410	q Valu 9 8,579 9 18,364 1 10,225 9 7,843	le Pro 18 2,0521 62 1,2169 604 3,4753 624 4,8025	b / 7E-4 88E-8 66E-5 66E-4	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1	LCL 778,0136 2202,80684 908,73033 634,20466	UCL 1897,30152 3273,05079 1891,81217 1704,44861
	PI 0,2 PI 0,5 PI 0 PI 0 PI 1, PI	5% Referência 0% Referência 50% PI 0,25% 0% Referência 1,0% PI 0,25%	MeanDiff 1337,6575 2737,9288 1400,2712 1169,3266 -168,3309	SEM 6 220,5028 1 210,8410 5 193,6699 3 210,8410 3 193,6699	q Valu 9 8,579 9 18,364 1 10,225 9 7,843 1 1,229	Pro 118 2,0521 162 1,2169 504 3,4753 324 4,8025 118 0,8	b / 7E-4 18E-8 16E-5 16E-4 2048	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 0	LCL 778,0136 2202,80684 908,73033 634,20466 -659,87185	UCL 1897,30152 3273,05079 1891,81217 1704,44861 323,20999
	PI 0,2 PI 0,5 PI 0 PI 0 PI 1, PI PI	5% Referência 5% Referência 50% PI 0,25% 0% Referência 1,0% PI 0,25% 1,0% PI 0,50%	MeanDiff 1337,6575 2737,9288 1400,2712 1169,3266 -168,3309 -1568,6021	SEM 6 220,5028 1 210,8410 5 193,6699 3 210,8410 3 193,6699 8 182,5937	q Valu 9 8,579 9 18,364 1 10,225 9 7,843 1 1,229 4 12,149	Pro 118 2,0521 162 1,2169 504 3,4753 324 4,8025 118 0,83 004 5,7238	b / 7E-4 8E-8 6E-5 6E-4 2048 1E-6	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 0 1	LCL 778,0136 2202,80684 908,73033 634,20466 -659,87185 -2032,03141	UCL 1897,30152 3273,05079 1891,81217 1704,44861 323,20999 -1105,17295

Tabela 8.14 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de eucalipto aos 7 dias de idade.

Ę	De	escriptive	e Statistics									
			Sample Size	Mean	Standa	ard Deviatio	n SE (of Mean				
	R	eferência	3	4644,43253		123,2593	2 7	1,1638				
	E	EU 0,25%	4	5017,96363		183,8253	1 91	,91265				
	E	EU 0,50%	4	4962,22065		317,3152	3 158	8,65762				
		EU 1,0%	5	4977,4328		142,4152	3 63	8,69003				
F	Or	ne Way I	ANOVA									
	F.	Overall J	ANOVA									
			DF Sum of Sq	uares Mear	Square	F Value	Prob>	F				
		Model	3 289794,6	5845 9659	8,21948	2,25102	0,134	31				
	Ц	Error	12 514956,2	21814 4291	3,01818							
		Total	15 804750	,8766								
		Null Hypoth	nesis: The means of a	Il levels are equa								
		Alternative At the 0.05	Hypothesis: The mea level, the nonulation r	ns of one or more means are not sig	elevels are o nificantly dit	different Iferent						
		Eit Ototi	otion									
	•	Fil Sldik	Sucs									
L	Ī		Joinpansons									
			1 1 2 3 1	MoonDiff	QEI		luo	Droh	Alpha	Qia		
		FILO	25% Peferência	272 52100	159.21	VI 4 Va	970 0	120//	Alpha 0.1	OIQ 0	-21 52066	779 60195
		EU 0,	50% Referência	317 78812	158.21	1692 2.84	053 0	23815	0,1	0	-91,00900	722.85888
		EU O	50% FU 0 25%	-55 74297	146.48	8041 0.53	818 0	98036	0,1	0	-430 76562	319 27967
	٦	EU 1	1.0% Referência	333 00027	151.28	3431 31	129 0	17808	0.1	0	-54 32145	720 32199
		EU	1.0% EU 0.25%	-40.53083	138.96	351 0.41	248 0	.99091	0.1	0	-396,30855	315,24689
		EU	1.0% EU 0.50%	15,21215	138.96	351 0.15	481	0.9995	0,1	0	-340,56557	370,98987
		Canada			alexiliar-1				-1-	-	,	,
		Sig equals	i indicates that the mi D indicates that the mi	ans difference is	not significant	at the 0,1 leve ant at the 0,1 l	evel.					
		¥ 1										

Tabela 8.15 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de pinho aos 7 dias de idade.

7.	Des	criptive	Statistics	-								
			Sample Size	Mean	Standar	d Deviation	SE 0	ofMean				
	Ref	erência	3	4644,43253		123,25932	7	1,1638				
٦	P	0,25%	4	3302,38492		292,81806	146	,40903				
	P	0,50%	5	3987,27751		135,16017	60	,44547				
		PI 1,0%	4	4467,77345		280,02048	140	,01024				
-	One	Way A	NOVA									
[E O	verall A	NOVA									
			DF Sum of Sq	uares Mean	Square	F Value	Pro	ib>F				
	N	lodel	3 4,012	216E6 1,3	3739E6	26,93084	1,293	841E-5				
		Error	12 595920,4	45628 49660	,03802							
		Total	15 4,608	308E6								
0	A ∃ Fi ⊐ M	ternative H the 0.05 I t Statis leans C Tukey	typothesis: The mea evel, the population tics comparisons Test	ns of one or more i means are significa	evels are di ntly differer	fferent it.						
				MeanDiff	SEM	/ g Va	alue	Prob	Alpha	Sia	LCL	UCL
		PI 0,28	5% Referência	-1342,04762	170,20	093 11,1	5118	2,25447E-5	0,1	1	-1777,80011	-906,29512
		PI 0,50)% Referência	-657,15502	162,74	321 5,7	1058	0,00773	0,1	1	-1073,8141	-240,49595
	ЦЧ	PI 0,	50% PI 0,25%	684,89259	149,48	919 6,4	7929	0,00305	0,1	1	302,16679	1067,61839
		PI 1,0)% Referência	-176,65908	170,20	093 1,4	6787	0,73135	0,1	0	-612,41158	259,09341
		PI	1,0% PI 0,25%	1165,38853	157,57	544 10,4	5917	4,28494E-5	0,1	1	761,96012	1568,81695
		PI	1,0% PI 0,50%	480,49594	149,48	919 4,5	4564	0,03265	0,1	1	97,77014	863,22175
	S	g equals 1 g equals 0	indicates that the m indicates that the m	eans difference is eans difference is	significant at not significat	t the 0,1 level. nt at the 0,1 lev	vel.					

Tabela 8.16 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de eucalipto aos 28 dias de idade.

1			Sample Size	Mean	Standa	rd Deviatio	n SE o	of Mean				
F	Refe	erência	3	4112,83283		17,297	6 9	,98678				
	EU	0,25%	3	3912,80176		474,0226	9 273	,67713				
	EU	0,50%	3	3839,87554		295,4936	5 170	,60334				
	E	U 1,0%	3	3927,72607		70,7800	2 40	,86487				
С	ne	Way A	NOVA									
F	0	verall A	NOVA									
		[)F Sum of Sq	uares Mear	Square	F Value	Prob>	F				
	N	lodel	3 121530,9	97555 4051	0,32518	0,51065	0,6860)3				
		Error	8 634646,0	06003 793	30,7575							
		Total	11 756177,0	3558								
+ -	At Fi M	the 0.05 le t Statis eans C Tukev	ivel, the population r tics omparisons Test	means are not sig	nificantly dif	ferent.						
	Πı	rancy		MeanDiff	SE	M aV	alue	Prob	Alpha	Sia	LCL	UCL
		EU 0,2	5% Referência	-200,0310	7 229,9	7211 1,2	3009 (),82017	0,1	0	-823,52064	423,458
		EU 0,5	0% Referência	-272,9572	3 229,9	7211 1,6	7855 (,65097	0,1	0	-896,44685	350,5322
L	14	EU 0,	50% EU 0,25%	-72,9262	2 229,9	7211 0,4	4846 (,98813	0,1	0	-696,41579	550,5633
		EU 1,	0% Referência	-185,1067	5 229,9	7211 1,1	3831 (,85044	0,1	0	-808,59632	438,3828
		EU 1	,0% EU 0,25%	14,9243	1 229,9	7211 0,0	9178 (,99989	0,1	0	-608,56526	638,4138
									0.4	0		

Tabela 8.17 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de pinho aos 28 dias de idade.

	Des	criptive	sta	atistics	•								•		
			Sa	ample Size	Me	an	Standar	d Deviatio	n S	E of Me	ean				
	Ref	erência		3	4112,	83283		17,297	6	9,986	678				
٦	P	0,25%		4	5115,	13426		257,3404	7 1	28,67	024				
	P	0,50%		5	5040,	59797		439,7598	4 1	96,66	658				
l		PI 1,0%		3	5351,	13774		268,9029	2 1	55,25	117				
2	One	Way /	ANC	0VA											
	Ģ C	verall A	ANO	VA											
			DF	Sum of Sq	uares	Mean	Square	F Value	Pr	ob>F]				
	N	lodel	3	2,73	287E6	91095	8,23875	8,96738	0,0	0272					
		Error	11	1,11	744E6	10158	5,74586								
		Total	14	3,85	032E6										
		t the 0.05 t the 0.05 it Statis leans (Tukey	Hypot level, stics Com	thesis: The mea the population parisons sf	ins of one means are	e or more l e significa	evels are dif ntly differen	ferent t.							
	ΙT	/ anto j			Mea	nDiff	SEM	a Va	lue	Pro	b	Alpha	Sig		UCI
		PI 0.2	5%	Referência	1002	30143	243.430	38 5.82	289	0.007	791	0.1	-/9	372.59727	1632.00559
		PI 0.5	0%	Referência	927	76514	232,763	397 5,63	686	0,009	981	0,1	1	325,6528	1529,87749
	Цч	PI 0	,50%	6 PI 0,25%	-74	53629	213,807	736 0,49	301	0,984	468	0,1	0	-627,61179	478,53922
		PI 1,	0%	Referência	1238	30491	260,238	303 6,72	933	0,002	282	0,1	1	565,12284	1911,48698
		PI	1,0%	6 PI 0,25%	236	00348	243,430	38 1,37	107	0,769	903	0,1	0	-393,70068	865,70764
		PI	1,0%	6 PI 0,50%	310,	53977	232,763	397 1,88	676	0,561	189	0,1	0	-291,57258	912,65211
	s	ig equals 1 ig equals (indic indic	ates that the m ates that the m	eans diffe eans diffe	erence is s erence is r	significant at not significar	the 0,1 level at the 0,1 k	evel.						

Tabela 8.18 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de eucalipto aos 90 dias de idade.

		Sa	ample Size	Mea	an	Standar	d Deviation	SE	of Mean				
Ref	ferência	а	3	4249,0	6407		361,51789	20	8,72245				
EU	J 0,25%	6	3	4107,	,6662		262,4512	! 15	1,52627				
EL	J 0,50%	6	3	3684,4	8915		350,0127	20	2,07992				
E	EU 1,0%	6	5	4075,3	31768		404,43371	18	0,86826				
One	e Way	ANC	OVA										
Ģ C	Overall	ANC)VA										
		DF	Sum of Squ	Jares	Mean	Square	F Value	Prot	b>F				
1	Model	3	530005	,0417	17666	8,34723	1,36062	0,31	021				
	Error	10	1,298	44E6	12984	3,59242							
	Total	13	1,828	44E6									
N	Null Hypo	thesis:	The means of a	ll levels are	e equal								
► A E F	Null Hypo Alternative At the 0.09 Fit Stat	thesis: Hypot 5 level, <i>iStiCS</i>	The means of a thesis: The mean the population r	II levels are ns of one o neans are i	e equal or more le not signif	evels are dif icantly diffe	ferent erent.						
	Null Hypo Alternative At the 0.01 Fit Stat Means	thesis: Hypot Flevel, istics Com	The means of a thesis: The means of a thesis: The mean the population r	II levels are ns of one o neans are i	e equal or more le not signif	evels are dif licantly diffe	ferent erent.						
	Null Hypo Alternative At the 0.09 Fit Stat Means Tuke	thesis: Hypot Istics Com Ey Te	The means of a thesis: The mean the population r parisons est	I levels are ns of one o neans are i Mooi	e equal or more le not signif	evels are dif icantly diffe	ferent erent.	luo	Proh	Alpha	Sig		
	Alternative Atternative At the 0.02 Fit Stat Means	thesis: Hypot Slevel, istics Com cy Te	The means of a thesis: The mean the population r parisons est Referência	I levels are ns of one of neans are Means	e equal or more le not signif nDiff 39787	evels are dif icantly diffe	ferent erent.	lue	Prob	Alpha	Sig	LCL	UCL
₽ F	Auternative Attenative At the 0.00 Fit Stat Means Tuke	thesis: Hypot Slevel, istics Com y Te ,25% 50%	The means of a thesis: The mean the population r parisons st Referência Referência	Mean -141,3	e equal or more le not signif nDiff 39787 57491	evels are dif icantly diffe SEM 294,214 294,214	ferent erent. q Va 488 0,67 488 2 71	lue 966 376	Prob 0,96168 0,28008	Alpha 0,1	Sig 0	LCL -911,99944 -1335 17649	UCL 629,2037 206.0266
	Auli Hypo Alternative At the 0.03 Fit Stat Means Tuke EU 0 EU 0 EU 0	thesis: a Hypot 5 level, 5 lev	The means of a thesis: The mean the population r parisons st Referência Referência 6 EU 0.25%	Mean -141,3 -2564,5 -423	e equal or more le not signif <u>nDiff</u> 39787 57491 17705	SEM 294,214 294,214 294,214	ferent erent. 488 0,67 488 2,71 488 2,0	lue 966 376 341	Prob 0,96168 0,28008 0,50571	Alpha 0,1 0,1	Sig 0 0	LCL -911,99944 -1335,17649 -1193,77862	UCL 629,2037 206,0266(347,4245)
	Aull Hypo Alternative At the 0.01 Eit Stat Means Tuke EU 0 EU 0 EU 0 EU	thesis: a Hypot 5 level, istics Com by Te 0,25% 0,50% 0,50% 1,0%	The means of a thesis: The mean the population r parisons est Referência Referência 6 EU 0,25% Referência	Mean -141,3 -564,5 -173,7	n pe equal or more le not signif <u>nDiff</u> 39787 57491 17705 74639	evels are differently differen	ferent erent. 488 0,67 488 2,71 488 2,0 379 0,93	lue 966 376 341 373	Prob 0,96168 0,28008 0,50571 0,90954	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 0	LCL -911,99944 -1335,17649 -1193,77862 -862,99339	UCL 629,2037 206,02660 347,4245 515,50062
	Aull Hypo Alternative At the 0.0% Fit Stat Means Tuke EU 0 EU 0 EU 0 EU 0 EU 0	thesis: a Hypot 5 level, istics Com by Te ,25% ,50% 0,50% 1,0% J 1,0%	The means of a thesis: The mean the population r parisons est Referência Referência 6 EU 0,25% Referência 6 EU 0,25%	Mean -141,3 -564,5 -423,7 -773,7 -32,3	e equal or more le not signif 39787 57491 17705 74639 34852	evels are dif icantly diffe 294,214 294,214 294,214 294,214 203,153 263,153	ferent erent. 488 0,67 488 2,71 488 2,0 379 0,93 379 0,17	lue 966 376 341 373 384	Prob 0,96168 0,28008 0,50571 0,90954 0,99929	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 0 0 0	LCL -911,99944 -1335,17649 -1193,77862 -862,99339 -721,59552	UCL 629,2037 206,02661 347,4245 515,5006 656,89841
	Auli Hypo Alternative At the 0.04 Fit Stat Means Tuke EU 0 EU 0 EU 0 EU 0 EU 0 EU 0 EU 0	thesis: a Hypot 5 level, istics Com ay Te ,25% 0,50% 0,50% 1,0% J 1,0% J 1,0%	The means of a thesis: The mean the population r parisons st Referência 6 EU 0,25% Referência 6 EU 0,25% 6 EU 0,50%	Mean -141,: -564,! -423,: -173,7 -32,2 390,8	e equal or more le not signif 39787 57491 17705 74639 34852 82853	evels are dif icantly diffe 294,214 294,214 294,214 294,214 294,215 263,155 263,155	ferent rent. 488 0,67 488 2,71 488 2,0 379 0,93 379 0,17 379 2,10	lue 966 376 341 373 384 035	Prob 0,96168 0,28008 0,50571 0,90954 0,99929 0,48036	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0 0 0 0 0	LCL -911,99944 -1335,17649 -1193,77862 -862,99339 -721,59552 -298,41848	UCL 629,2037 206,02661 347,4245 515,5006 656,89841 1080,0755

Tabela 8.19 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de pinho aos 90 dias de idade.

		Sa	ample Size	Me	an	Standard	Deviation	SE of Mea	n			
Ref	ferência		3	4249,	06407		361,51789	208,7224	5			
P	PI 0,50%		3	4330),4444		33,00938	19,0579	7			
	PI 1,0%		4	4686,	83512		301,59588	150,7979	4			
One	e Way A	ANC	OVA									
Ģ C	Dverall A	NC	0VA									
	[DF	Sum of Sq	uares	Mean	Square	F Value	Prob>F				
1	Model	2	388349,	89215	19417	74,94608	2,53374	0,14866				
	Error	7	536449,	B3056	7663	35,69008						
-	Total	0	004700	70074								
N	Null Hypothe	9 esis:	924799, The means of a	I levels a	are equal							
N A A ⊕ F ⊡ M	Null Hypothe Alternative H At the 0.05 k Fit Statis Means C	esis: Hypot evel, tiCS	924799, The means of a thesis: The mea the population i DATISONS	I levels a ns of one means are	are equal or more e not sign	levels are diff	erent rent.					
	Null Hypothe Alternative H At the 0.05 k Fit Statis Means C Tukey	esis: Hypot evel, tics Com	924799, The means of a thesis: The mea the population parisons	I levels a ns of one means are	are equal or more e not sign	levels are diff	erent rent.					
	Null Hypothe Alternative F At the 0.05 k Fit Statis Means C Tukey	esis: Hypot evel, tics Com	924799, The means of a thesis: The mea the population i parisons st	I levels a ill levels a ns of one means are Mear	are equal e or more e not sign	levels are diff ificantly diffe	erent rent.	Prob	Alpha	Sig	LCL	UCL
	Null Hypothe Alternative H At the 0.05 k Fit Statis Means C Tukey	9 Hypot evel, tics om Te	924799, The means of a thesis: The mea the population i parisons st Referência	Mear 81,3	are equal e or more e not sign Diff 8033	levels are diff ificantly diffe SEM 226,0319	erent rent. q Value 9 0,5091	 Prob 7 0,93172 	Alpha 0,1	Sig 0	LCL -470,21455	UCL 632,975
	Null Hypothe Alternative F At the 0.05 k Fit Statis Means C Tukey PI 0,50 PI 1,0	sis: Hypot evel, tics Com Te	924799, The means of a thesis: The means the population i parisons est Referência Referência	Mear 81,3 437,7	are equal e or more e not sign Diff 8033 7105	levels are diff ificantly diffe SEM 226,0319 211,4335	erent rent. 9 0,5091 7 2,9281	Prob 7 0,93172 1 0,16586	Alpha 0,1 0,1	Sig 0	LCL -470,21455 -78,19871	UCL 632,975 953,740
	Null Hypothe Alternative F At the 0.05 k Fit Statis Means C I Tukey PI 0,50 PI 1,0 PI 1,0	esis: Hypot evel, tics Com Te	p24739, The means of a thesis: The means the population is parisons st Referência Referência 6 PI 0,50%	Mear 81,3 437,7 356,3	are equal e or more e not sign Diff 8033 7105 9072	levels are diff ificantly diffe 226,0319 211,4335 211,4335	erent rent. 9 0,5091 7 2,9281 7 2,3837	 Prob 0,93172 0,16586 0,27554 	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -470,21455 -78,19871 -159,57905	UCL 632,975 953,740 872,360

Tabela 8.20 - Análise de variância do parâmetro deformação de pico para as pastas contendo fibras de eucalipto aos 180 dias de idade.

			Sa	ample Size	Me	an	Standa	rd Deviat	ion S	E of Mean				
R	Refe	erência		3	4949	9,9514		337,918	399 1	195,09762				
	EU	0,25%		3	4356	6,8932		112,722	269	65,08048				
	EU	0,50%		4	4112	2,2435		355,033	337 1	177,51668				
	El	U 1,0%		3	4115,	80427		336,39	19 1	194,21554				
0	ne	Way J	ANC	VA										
Ę	0	verall /	ANC	VA										
			DF	Sum of Sq	uares	Mean	Square	F Value	Pro	b>F				
	Μ	lodel	3	1,468	848E6	48949	3,2884	5,1330	2 0,0	2429				
	ł	Error	9	858255,4	43038	95361	,71449							
	-	Tabal	40	0.000	7450									
+	Nu Alt At	I Otal ull Hypoth ternative the 0.05	esis: Hypot level,	2,320 The means of a hesis: The mea the population r	I levels a ns of one means are	are equal or more l e significa	evels are d ntly differe	ifferent nt.						
+ -	Nu Alt At Fi	I Otal ull Hypoth ternative the 0.05 it Statis eans (esis: Hypot level, Stics Com	2,320 The means of a hesis: The mea the population r parisons	Il levels a ns of one means are	are equal e or more l e significa	evels are d ntly differe	ifferent nt.						
+	Nu Alt At Fil	I Otal ull Hypoth ternative the 0.05 it Statis eans (Tuke)	esis: Hypot level, Stics Com / Te	2,320 The means of a hesis: The mea the population of parisons st	Il levels a ns of one means are	are equal e or more l e significa	evels are d ntly differe	ifferent nt.				0		
+	Nu Alt At Fi	I Otal III Hypoth ternative the 0.05 it Statist leans (Tuke)	esis: Hypot level, stics Com	2,320 The means of a hesis: The mea the population i parisons st	Means are	are equal e or more l e significal	evels are d ntly differe	ifferent nt. M q	Value	Prob	Alpha	Sig	LCL	UCL
+	Nu Alt At	I Otal III Hypoth ternative the 0.05 it Statist eans (Tuke) EU 0,	esis: Hypot Hypot level, Stics Com / Te	2,320 The means of a hesis: The mea the population of parisons st Referência	Me: Me:	are equal e or more le e significa anDiff 13,0582	evels are d ntly differe SEI 252, 1	ifferent nt. M q 1398 3	Value 32637	Prob 0,15693	Alpha 0,1	Sig 0	LCL -1263,62943	UCL 77,513
+	Nu Alt At	I Otal JII Hypoth ternative the 0.05 it Statis eans (Tuke) EU 0, EU 0,	esis: Hypot level, stics Com 7 Te 25% 50%	2,320 The means of a hesis: The means the population of parisons st Referência Referência	Means are been been been been been been been be	are equal e or more l e significa anDiff 3,0582 7,7079	evels are d ntty differe 252, 1 235,85	ifferent nt. 1398 3 5518 5	Value 32637 02299	Prob 0,15693 0,02624	Alpha 0,1 0,1	Sig 0 1	LCL -1263,62943 -1464,96985	UCL 77,513 -210,445
+		I Otal JII Hypoth ternative the 0.05 it Statist eans (Tuke) EU 0,1 EU 0,2 EU	12 esis: Hypot level, stics Com 7 Te 25% 50% ,50%	2,320 The means of a hesis: The means the population is parisons st Referência Referência b EU 0,25%	Mea Mea -59 -83 -24 -24	are equal e or more l e significa anDiff 3,0582 7,7079 4,6497	evels are d ntly differe 252, 2 235,81 235,81 252,81	ifferent nt. 1398 3 5518 5 5518 1	Value 32637 02299 46695	Prob 0,15693 0,02624 0,73311	Alpha 0,1 0,1 0,1	Sig 0 1 0	LCL -1263,62943 -1464,96985 -871,91165	UCL 77,513 -210,445 382,612
+		I OTAI IIII Hypoth ternative the 0.05 it Statistic eans (Tuke) EU 0, EU 0, EU 0, EU 0, EU 0	12 esis: : Hypot level, stics Com, 7 Te 25% 50% ,50% ,0%	2,320 The means of a hesis: The means the population is parisons st Referência 6 EU 0,25% Referência 6 EU 0,25%	Means are Means are -59 -83 -24 -834 -241	are equal e or more le e significal anDiff 13,0582 7,7079 4,6497 ,14713	evels are d ntly differe 252, 7 235,88 235,88 252, 7 252, 7	M q 1398 3 5518 5 5518 1 1398 1	Value 32637 02299 46695 4,6786 35222	Prob 0,15693 0,02624 0,73311 0,03777	Alpha 0,1 0,1 0,1 0,1	Sig 0 1 0	LCL -1263,62943 -1464,96985 -871,91165 -1504,71836 911,66016	UCL 77,513 -210,445 382,612 -163,575 429,492
÷		I UTAI IIII Hypoth ternative the 0.05 it Statistic eans (Tuke) EU 0, EU 0, EU 0 EU 1 EU 1 EU	12 esis: : Hypot level, com / Te 25% 50% ,50% ,0% 1,0%	2,320 The means of a hesis: The means parisons st Referência 6 EU 0,25% Referência 6 EU 0,25% 5 EU 0,25%	Me: -59 -83 -24 -834 -241 -241	are equal or more le e significal anDiff 3,0582 7,7079 4,6497 ,14713 ,08893 56077	evels are d ntly differe 252, * 235,8* 235,8* 252, * 252, *	ifferent nt. 1398 3 5518 5 5518 1 1398 1 1398 1 1398 1	Value 32637 02299 46695 4,6786 35223 02135	Prob 0,15693 0,02624 0,73311 0,03777 0,77655	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 1 0 1 0	LCL -1263,62943 -1464,96985 -871,91165 -1504,71836 -911,66016 -623,70118	UCL 77,513 -210,445 382,612 -163,575 429,482 630,822

Tabela 8.21 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de eucalipto aos 3 dias de idade.

		Sample Size	Mean	Standard	Deviation	SE of Mean				
Ref	ferência	4	11 41037		0 1978	0.0989				
FL	10.25%	5	13 01008		0.36779	0 16448				
EL	J 0.50%	5	11.7905		0.31161	0.13936				
E	U 1.0%	5	9,60907		0.28729	0,12848				
One	- Way A	NOVA			,	,				
	verall A	NOVA								
Πř)F Sum of Sa	Jares Mea	an Square	F Value	Prob>F				
	Model	3 29.6	9925	9.89975	107.84197	2.24318E-10)			
	Error	15 1.3	7698	0.0918			-			
14	Total	18 31.0	7623				-			
N	ull Hypothe	sis: The means of a	l levels are equ	al			-			
A	Iternative H	lypothesis: The mea	ns of one or mo	re levels are d	ifferent					
A	t the 0.05 le	evel, the population r	neans are signif	icantly differe	nt.					
± Γ	it Statis	tics								
₽ <u>/</u>	leans C	omparisons								
Ē	Tukey	Test								
			MeanDiff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
	EU 0,2	5% Referência	MeanDiff 1,5997	SEM 0,20325	q Value 11,1309	Prob 5,66494E-6	Alpha 0,1	Sig 1	LCL 1,09096	UCL 2,10845
	EU 0,2 EU 0,5	5% Referência 0% Referência	MeanDiff 1,5997 0,38012	SEM 0,20325 0,20325	q Value 11,1309 2,64494	Prob 5,66494E-6 0,28129	Alpha 0,1 0,1	Sig 1 0	LCL 1,09096 -0,12862	UCL 2,10845 0,88887
	EU 0,2 EU 0,5 EU 0,5	5% Referência 0% Referência 50% EU 0,25%	MeanDiff 1,5997 0,38012 -1,21958	SEM 0,20325 0,20325 0,19162	q Value 11,1309 2,64494 9,00073	Prob 5,66494E-6 0,28129 6,75775E-5	Alpha 0,1 0,1 0,1	Sig 1 0 1	LCL 1,09096 -0,12862 -1,69923	UCL 2,10845 0,88887 -0,73993
	EU 0,2 EU 0,5 EU 0,5 EU 1,	5% Referência 0% Referência 50% EU 0,25% 0% Referência	MeanDiff 1,5997 0,38012 -1,21958 -1,8013	SEM 0,20325 0,20325 0,19162 0,20325	q Value 11,1309 2,64494 9,00073 12,53364	Prob 5,66494E-6 0,28129 6,75775E-5 1,74661E-6	Alpha 0,1 0,1 0,1 0,1	Sig 1 0 1 1	LCL 1,09096 -0,12862 -1,69923 -2,31005	UCL 2,10845 0,88887 -0,73993 -1,29256
	EU 0,2 EU 0,5 EU 0, EU 1, EU 1	5% Referência 0% Referência 50% EU 0,25% 0% Referência 1,0% EU 0,25%	MeanDiff 1,5997 0,38012 -1,21958 -1,8013 -3,40101	SEM 0,20325 0,20325 0,19162 0,20325 0,19162	q Value 11,1309 2,64494 9,00073 12,53364 25,10003	Prob 5,66494E-6 0,28129 6,75775E-5 1,74661E-6 0	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 1 0 1 1 1	LCL 1,09096 -0,12862 -1,69923 -2,31005 -3,88065	UCL 2,10845 0,88887 -0,73993 -1,29256 -2,92136
	EU 0,2 EU 0,5 EU 0,5 EU 1, EU 1 EU 1	5% Referência 0% Referência 50% EU 0,25% 0% Referência 1,0% EU 0,25% 1,0% EU 0,50%	MeanDiff 1,5997 0,38012 -1,21958 -1,8013 -3,40101 -2,18143	SEM 0,20325 0,20325 0,19162 0,20325 0,19162 0,19162	q Value 11,1309 2,64494 9,00073 12,53364 25,10003 16,09931	Prob 5,66494E-6 0,28129 6,75775E-5 1,74661E-6 0 1,01761E-8	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 0 1 1 1 1 1	LCL 1,09096 -0,12862 -1,69923 -2,31005 -3,88065 -2,66107	UCL 2,10845 0,88887 -0,73993 -1,29256 -2,92136 -1,70178
	EU 0,2 EU 0,5 EU 0, EU 1, EU 1 EU 1	5% Referência 0% Referência 50% EU 0,25% 0% Referência 1,0% EU 0,25% 1,0% EU 0,50% indicates that the me	MeanDiff 1,5997 0,38012 -1,21958 -1,8013 -3,40101 -2,18143 sans difference	SEM 0,20325 0,20325 0,19162 0,20325 0,19162 0,19162 is significant a	q Value 11,1309 2,64494 9,00073 12,53364 25,10003 16,09931 at the 0,1 level.	Prob 5,66494E-6 0,28129 6,75775E-5 1,74661E-6 0 1,01761E-8	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 0 1 1 1 1	LCL 1,09096 -0,12862 -1,69923 -2,31005 -3,88065 -2,66107	UCL 2,10845 0,88887 -0,73993 -1,29256 -2,92136 -1,70178

Tabela 8.22 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de pinho aos 3 dias de idade.

		Sa	ample Size	Mea	an	Standard	Deviation	SE of Mea	an			
Ref	ferênci	а	4	11,41	037		0,1978	0,09	39			
P	PI 0,259	6	4	11,40	329		0,70078	0,350	39			
P	PI 0,50%	6	5	10,30	161		0,43519	0,194	62			
	PI 1,09	6	5	10,02	203		0,37173	0,166	24			
Dne	e Way	ANC	OVA									
C	Dverall	ANC	DVA 🛛									
Γ		DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>	F			
1	Model	3	7,0	08463		2,36154	11,39688	4,73794	IE-4			
	Error	14	2,9	90093		0,20721						
N A A	Total Null Hypo Alternative At the 0.0	17 thesis: e Hypo 5 level,	9,9 The means of a thesis: The mea the population i	98556 Il levels a ins of one means are	are equ e or mo e signif	ual ore levels are d ficantly differe	different ent.					
F	Total Null Hypo Alternative At the 0.0 Fit Stat Means	17 thesis: Hypo 5 level, istics Com	9,1 The means of a thesis: The mea the population parisons	98556 Il levels a ns of one means are	are equ e or mo e signif	ual ore levels are d ficantly differe	lifferent ent.					
	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke	17 thesis: Hypo 5 level, istics Com ey Te	9,1 The means of a thesis: The mea the population i parisons est	98556 Ill levels a ins of one means are Mean	are equ e or mo e signif	ial ore levels are d ficantly differe QEM	different ent.	Proh	Alpha	Sig		
	Total Null Hypo Alternative At the 0.0 Fit Stat Means	17 thesis: Hypo 5 level, istics Com cy Te	9,1 The means of a thesis: The mea the population is parisons est Referência	98556 ill levels a ns of one means are <u>Mean</u> -0.000	are equ e or mo e signif Diff 709	ial ore levels are d ficantly differe SEM 0 32188	different ent. Q Value	Prob	Alpha	Sig	LCL -0.81707	UCL 0.8037
	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke PI 0,	17 thesis: Hypo level, istics Com ey Te 25% 50%	9,1 The means of a thesis: The mea the population parisons st Referência Referência	98556 ill levels a ins of one means are Mean -0,000 -1 101	are equ e or mo e signif Diff 709 877	al relevels are d ficantly differe SEM 0,32188 0,30536	different ent. 0,03113 5 13504	Prob 1 0.01285	Alpha 0,1	Sig 0	LCL -0,81797 -1 87803	UCL 0,8037 -0.339
	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke PI 0, PI 0, PI 0,	17 thesis: Hypo 5 level, istics Com ey Te 25% 50% 0 50%	9,1 The means of a thesis: The mea the population i parisons ist Referência Referência 6 PI 0 25%	98556 Il levels a ns of one means are <u>Mean</u> -0,000 -1,100 -1,100	Diff 709 877	sal re levels are d ficantly differe SEM 0,32188 0,30536 0,30536	q Value 0,03113 5,13504 5 10223	Prob 1 0,01285 0.01343	Alpha 0,1 0,1	Sig 0 1	LCL -0,81797 -1,87803 -1 87095	UCL 0,8037 -0,339 -0,3324
	Total Null Hypo Alternative At the 0.0 Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 0,	17 thesis: a Hypo 5 level, istics Com ay Te 25% 50% 0,50% 1.0%	9,1 The means of a thesis: The mea the population i parisons est Referência Referência 6 PI 0,25% Referência	98556 Ill levels a ns of one means are Mean -0,00 -1,10 -1,10 -1,38 -1,48 -1	Diff 709 877 168 834	ual pre levels are d ficantly differe SEM 0,32188 0,30536 0,30536 0,30536	q Value 0,03113 5,13504 5,10223 6,42984	Prob 1 0,01285 0,01343 0.00228	Alpha 0,1 0,1 0,1 0,1	Sig 0 1 1	LCL -0,81797 -1,87803 -1,87095 -2,15761	UCL 0,8037 -0,339 -0,3324 -0,6190
	Total Vull Hypo Alternative At the 0.0 Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 1 PI 1 PI 1	17 thesis: Hypo level, istics Com y Te 25% 50% 0,50% 1,0%	9,1 The means of a thesis: The mean the population of parisons est Referência & PI 0,25% Referência & PI 0,25%	98556 Ill levels a means are Mean -0,000 -1,100 -1,100 -1,380 -1,380 -1,380	Diff 709 877 168 834 126	ual re levels are d ficantly differe 0,32188 0,30536 0,30536 0,30536 0,30536	y Value o,03113 5,13504 5,10223 6,42984 6,39702	Prob 1 0,01285 0,01343 0,00228 0,00238	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 1 1 1	LCL -0,81797 -1,87803 -1,87095 -2,15761 -2,15052	UCL 0,8037 -0,339 -0,3324 -0,6190 -0,6119

Tabela 8.23 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de eucalipto aos 7 dias de idade.

₽ _	Des	criptive	Statistics									
[Sample Size	Mea	n	Standard	Deviation	SE of Mean				
	Ref	erência	3	14,549	909		0,24711	0,14267				
٦	EU	0,25%	4	13,623	352		0,4657	0,23285				
	EU	0,50%	4	14,80	671		0,48625	0,24313				
	E	U 1,0%	5	13,307	713		0,24608	0,11005				
P (Dne	Way A	NOVA									
Ē	0	verall A	NOVA									
		1	DF Sum of Squ	lares	Mea	n Square	F Value	Prob>F				
	N	lodel	3 6,8	7794		2,29265	15,95519	1,731E-4				
		Error	12 1,7	2431		0,14369						
11-		Total	15 8,6	0225								
	N	ull Hypoth	esis: The means of a	l levels a	re equa	al						
	AI	Iternative H	lypothesis: The mean	ns of one	or mor	re levels are d	ifferent					
	A	t the 0.05 i	evel, the population n	neans are	signiti	icantiy differe	nt.					
+	F	it Statis	tics									
LF	M	leans C	comparisons									
	F	Tukey	Test									
				Mean	Diff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
		EU 0,2	5% Referência	-0,92	557	0,28952	4,52115	0,03365	0,1	1	-1,6668	-0,18434
		EU 0,5	i0% Referência	0,31	801	0,28952	1,55337	0,69715	0,1	0	-0,42322	1,05924
1		EU 0,	50% EU 0,25%	1,24	358	0,26804	6,56123	0,00277	0,1	1	0,55733	1,92982
		EU 1	,0% Referência	-1,24	197	0,27683	6,34465	0,00358	0,1	1	-1,95072	-0,53321
		EU 1	1,0% EU 0,25%	-0,31	639	0,25429	1,75963	0,61252	0,1	0	-0,96743	0,33464
		EU 1	1,0% EU 0,50%	-1,55	997	0,25429	8,67577	2,56002E-4	0,1	1	-2,211	-0,90894
	Si	ig equals 1	indicates that the me	ans diffe	rence i	is significant a	t the 0,1 level					
	Si	ig equals 0	indicates that the me	ans diffe	rence i	is not significa	int at the 0,1 le	evel.				

Tabela 8.24 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de pinho aos 7 dias de idade.

		Sa	ample Size	Mea	an	Standard	Deviation	SE of Mean				
Re	eferência		3	14,54	909		0,24711	0,14267				
F	PI 0,25%		4	17,52	597		0,50166	0,25083				
F	PI 0,50%		5	16,32	242		0,42844	0,1916				
	PI 1,0%		4	14,12	487		0,46671	0,23336				
On	e Way A	ANO	VA									
Ģ (Overall A	ANO	VA									
ΙГ		DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>F	1			
	Model	3	29,	14413		9,71471	51,47286	3,99276E-7	1			
	Error	12	2,	26481		0,18873						
	Total	15	31,	40894								
	A Marganet Margaret M											
Ŧ	At the 0.05 I Fit Statis	Hypot level, s <i>tics</i>	hesis: The mea the population	ins of one means ar	e or mo e signit	ficantly different	lifferent ent.					
E I	Alternative F At the 0.05 I Fit Statis Means C	Hypot level, StiCS COM	hesis: The mea the population Darisons	ins of one means ar	e or mo e signif	ficantly differe	different ent.					
	Alternative F At the 0.05 Fit Statis Means C Tukey	Hypot level, stics Com Te	hesis: The mea the population parisons st	ins of one means ar	e or mo e signif	re levels are o ficantly differe	different ent.					
	Alternative F At the 0.05 I Fit Statis Means C Tukey	Hypot level, stics Com Te	hesis: The mea the population parisons st	means ar Mean	e or mo e signif	re levels are o ficantly differe SEM	different ent. q Value	Prob	Alpha	Sig	LCL	UCL
	Attenative F At the 0.05 I Fit Statis Means C Tukey	Hypot level, stics Com Te 5% I	hesis: The mea the population parisons st Referência	Mean 2,97	e or mo e signif Diff 688	re levels are o ficantly differe SEM 0,33181	different ent. q Value 12,68797	Prob 8,60984E-6	Alpha 0,1	Sig 1	LCL 2,12738	UCL 3,8263
	Attenative F At the 0.05 I Fit Statis Means C Tukey PI 0,25 PI 0,50	Hypot level, stics Com (Te) 5% I	hesis: The mea the population parisons st Referência Referência	Mean 2,97	e or mo e signif 688 332	re levels are o ficantly differe SEM 0,33181 0,31727	different ent. q Value 12,68797 7,90456	Prob 8,60984E-6 5,90264E-4	Alpha 0,1 0,1	Sig 1	LCL 2,12738 0,96105	UCL 3,8263 2,585
	Attenative P At the 0.05 I Fit Statis Means C Tukey PI 0,25 PI 0,50 PI 0,50	Hypot level, Stics Com Te 5% I 5% I 0% I	hesis: The mea the population parisons st Referência Referência 6 PI 0,25%	Means ar 2,97 1,77 -1,20	Diff 688 332 356	re levels are of ficantly differe 0,33181 0,31727 0,29143	different ent. 12,68797 7,90456 5,8405	Prob 8,60984E-6 5,90264E-4 0,0066	Alpha 0,1 0,1 0,1	Sig 1 1	LCL 2,12738 0,96105 -1,94968	UCL 3,8263 2,585 -0,4574
	Attenative P At the 0.05 I Fit Statis Means C Tukey PI 0,29 PI 0,50 PI 0, PI 1,0	Hypot level, stics Com, 7 Te 5% I 5% I 5% I 5% I 5% I	hesis: The mea the population parisons st Referência Referência 6 PI 0,25% Referência	Means ar 2,97 1,77 -1,20 -0,42	e or mo e signif 688 332 356 422	SEM 0,33181 0,31727 0,29143 0,33181	q Value 12,68797 7,90456 5,8405 1,8081	Prob 8,60984E-6 5,90264E-4 0,0066 0,59253	Alpha 0,1 0,1 0,1 0,1	Sig 1 1 1 0	LCL 2,12738 0,96105 -1,94968 -1,27372	UCL 3,8263 2,585 -0,4574 0,4252
	Alternative P At the 0.05 I Fit Statis Means C Tukey PI 0,25 PI 0,50 PI 0,50 PI 0,50 PI 0,50	Hypot level, stics Com, 7 Te 5% I 0% I 50% 0% I 1,0%	hesis: The mea the population parisons st Referência Referência 6 PI 0,25% Referência 6 PI 0,25%	Means ar 2,97 1,77 -1,20 -0,42 -3,4	e or mo e signif 688 332 356 422 011	SEM 0,33181 0,31727 0,29143 0,33181 0,33181	q Value 12,68797 7,90456 5,8405 1,8081 15,65755	Prob 8,60984E-6 5,90264E-4 0,0066 0,59253 4,93042E-7	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 0 1	LCL 2,12738 0,96105 -1,94968 -1,27372 -4,18758	UCL 3,8263 2,585 -0,4574 0,4252 -2,6146
	Attendative F At the 0.05 I Fit Statis Means C Tukey PI 0,23 PI 0,50 PI 0, PI 1,0 PI 1	Hypot level, stics Com/ (Te 5% I 5% I 50% I 50% I 1,0%	hesis: The mea the population parisons st Referência 6 PI 0,25% Referência 6 PI 0,25% 6 PI 0,50%	Mean 2,97 1,77 -1,20 -0,42 -3,4 -2,19	e or mo e signif 688 332 356 422 011 754	re levels are of ficantly different 0,33181 0,31727 0,29143 0,33181 0,30719 0,29143	q Value 12,68797 7,90456 5,8405 1,8081 15,65755 10,66401	Prob 8,60984E-6 5,90264E-4 0,0066 0,59253 4,93042E-7 3,53307E-5	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 0 1 1	LCL 2,12738 0,96105 -1,94968 -1,27372 -4,18758 -2,94367	UCL 3,8263 2,585 -0,4574 0,4252 -2,6146 -1,4514

Tabela 8.25 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de eucalipto aos 28 dias de idade.

		Sample Size	Mea	in	Standard	Deviation	SE of Mea	n			
Re	eferência	5	19,25	912		0,54941	0,245	7			
E	U 0,25%	5	19,58	397		0,52581	0,2351	5			
E	U 0,50%	5	19,74	428		0,83278	0,3724	3			
E	EU 1,0%	4	17,76	509		0,74806	0,3740	3			
On	e Way A	NOVA									
Ģ (Overall A	NOVA									
ΙГ	[DF Sum of Sq	uares	Mea	n Square	F Value	Prob>F				
	Model	3 10,4	43778		3,47926	7,7132	0,00239				
	Error	15 6,7	76618		0,45108						
4	Total	18 17,2	20397								
	Fit Statis Means C	tics comparisons									
١ŀ	Тикеу	Test	Mag	- 0.44	051	a Valua	Deels	Alasha	0:-	1.01	1101
1 1 1	ELLOS	E% Doforâncio	Mean		5EM	q value	Pf00	Aipha	SIG	LUL 0.72020	1 2000
	EU 0,2	:0% Referência	0,34	2460	0,42477	1,08103	0,00890	0,1	0	-0,73839	1,3880
	200,5		0,40	5010	0,42477	0.52274	0,0703	0,1	0	-0,07000	1,0404
	FILO	30/0 20/0,20%	0,10	3402	0.45054	4 68967	0.02178	0,1	1	-2 62176	-0.3663
	EU 0, EU 1	0% Referência	-1.40				0,02110	v, 1		2,02170	0.000
	EU 0, EU 1	,0% Referência 1.0% EU 0.25%	-1,49	1888	0 45054	5 70934	0.00529	01	1	-2 94661	-0 69114
	EU 0, EU 1 EU	0% Referência 1,0% EU 0,25% 1.0% EU 0.50%	-1,49 -1,81	1888 7919	0,45054	5,70934 6,21256	0,00529	0,1	1	-2,94661 -3 10693	-0,69114

Tabela 8.26 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de pinho aos 28 dias de idade.

		Sa	imple Size	Mea	an	Standard	Deviation	SE of Mean				
Ref	erência	L	5	19,25	912		0,54941	0,2457				
P	10,25%		4	18,59	461		0,63702	0,31851				
P	10,50%		5	19,	108		0,33519	0,1499				
I	PI 1,0%		5	17,28	738		0,43681	0,19535				
One	e Way	ANC	VA									
0	verall	ANO	VA									
		DF	Sum of Sq	uares	Mea	an Square	F Value	Prob>F				
N	lodel	3	12,0	04796		4,01599	16,56127	5,0204E-5				
	Free	15	3.0	63739		0,24249						
	EIIOI											
	Total Iull Hypot Iternative It the 0.05	18 hesis: Hypot level,	15,1 The means of a hesis: The mea the population i	68535 all levels a ins of one means are	are equ e or mo e signif	ual pre levels are d ficantly differe	lifferent ent.					
	Total Iull Hypot Iternative It the 0.05 It Stati	18 hesis: Hypot level, stics Com	15,(The means of a hesis: The mea the population i parisons	68535 all levels a ins of one means are	are equ e or mo e signif	ual ore levels are d ficantly differe	lifferent ent.					
	Total Iull Hypot Iternative It the 0.05 It Stati Ieans Tuke	18 Hypot level, stics Com y Te	15,1 The means of a hesis: The mea the population i parisons st	68535 all levels a ins of one means are	are equ e or mo e signif	ial ire levels are d ficantly differe	lifferent ent.					
	Internative Internative Internative It the 0.05 It Stati Ieans Tuke	18 hesis: Hypot level, stics Com y Te	15, The means of a hesis: The mea the population parisons st	68535 all levels a ins of one means are Mean	are equ e or mo e signif	ual ore levels are d ficantly differe SEM	lifferent ent. q Value	Prob	Alpha	Sig	LCL	UCL
	Internative Internative Iternative It the 0.05 It Stati Iteans Tuke	18 hesis: Hypot level, stics Com y Te	15, The means of a hesis: The mea the population of parisons st Referência	68535 all levels a ins of one means are Mean -0,664	are equ e or mo e signif Diff 451	ore levels are d ficantly differe SEM 0,33034	lifferent ent. q Value 2,84486	Prob 0,22723	Alpha 0,1	Sig 0	LCL -1,49137	UCL 0,162
	Internative Internative Iternative It Stati Ieans Tuke	18 Hypot level, stics Com y Te 25% I	15,1 The means of a hesis: The mea the population of parisons st Referência Referência	68535 all levels a ins of one means are Mean -0,664 -0,15	are equ e or mo e signif Diff 451 113	sal re levels are d ficantly differe SEM 0,33034 0,31144	different ent. 2,84486 0,68624	Prob 0,22723 0,9612	Alpha 0,1 0,1	Sig 0	LCL -1,49137 -0,93069	UCL 0,162 0,628
	Total lull Hypot liternative it stati leans Tuke PI 0,1 PI 0,2	18 Hypot level, stics Com, y Te. 25% I 50% I 50% I	15,1 The means of a hesis: The mean the population of parisons st Referência Referência 5 PI 0,25%	68535 all levels a ins of one means are <u>Mean</u> -0,664 -0,15 0,51:	are equ e or mo e signif Diff 451 113 338	SEM 0,33034 0,33034	q Value 2,84486 0,68624 2,19787	Prob 0,22723 0,9612 0,43218	Alpha 0,1 0,1	Sig 0 0	LCL -1,49137 -0,93069 -0,31347	UCL 0,162 0,628 1,340
	Total Iuli Hypoti Iternative It the 0.05 It Stati Ieans Tuke PI 0,2 PI	18 Hypot level, stics Com, y Te 25% I 0% I 0,50% ,0% I	15,1 The means of a hesis: The mean the population of parisons st Referência Referência D PI 0,25% Referência	Mean -0,664 -0,151 -1,97	Diff 451 113 338	al ore levels are d ficantly differe 0,33034 0,31144 0,33034 0,31144	q Value 2,84486 0,68624 2,19787 8,95336	Prob 0,22723 0,9612 0,43218 7,16412E-5	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 0	LCL -1,49137 -0,93069 -0,31347 -2,75131	UCL 0,162 0,628 1,340 -1,192
	Internative Internative Iternativ	18 hesis: '.' Hypot level, level, istics Com, y Te. 25% I 50% I 50% I 50% I 1,0%	15,1 The means of a hesis: The mean parisons st Referência Referência o PI 0,25% Referência o PI 0,25%	Mean -0,664 -0,513 -1,97 -1,30	Diff 451 113 338 174 723	al re levels are d ficantly differe 0,33034 0,31144 0,33034 0,31144 0,33034	rifferent ent. 2,84486 0,68624 2,19787 8,95336 5,59645	Prob 0,22723 0,9612 0,43218 7,16412E-5 0,00619	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0 1 1	LCL -1,49137 -0,93069 -0,31347 -2,75131 -2,13409	UCL 0,162 0,628 1,340 -1,192 -0,480

Tabela 8.27 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de eucalipto aos 90 dias de idade.

		Sample Size	Mea	in	Standard	Deviation	SE of Mea	n			
Re	eferência	3	19,65	916		0,5925	0,3420	8			
E	U 0,25%	3	19,71	755		0,48453	0,2797	5			
E	U 0,50%	3	20,01	731		0,41492	0,2395	5			
E	EU 1,0%	3	18,48	119		0,21405	0,1235	8			
On	e Way A	ANOVA									
Ģ (Overall A	NOVA									
Ιг		DF Sum of Sq	uares	Mea	n Square	F Value	Prob>F				
	Model	3 4,	12305		1,37435	6,83925	0,01342				
	Error	8 1	,6076		0,20095						
Ч	Total	11 5,7	73066								
	Fit Statis Means C	tics Comparisons									
Ιľ	Tuncy	7000	Mear	nDiff	SEM	a Value	Proh	Ainha	Sig	I CI	LICI
	EU 0 2	25% Referência	0.05	5838	0.36602	0 22558	0.99843	0.1	0	-0.93394	1 05071
1 1 1	EUOS	50% Referência	0.35	5814	0.36602	1.3838	0.76522	0,1	0	-0.63418	1.35047
	EU 0	50% EU 0.25%	0.29	9976	0.36602	1.15821	0.84407	0.1	0	-0.69256	1,29208
		.0% Referência	-1.17	7798	0.36602	4.55148	0.04889	0.1	1	-2.1703	-0.18565
Ľ	EU 1		4.00	3636	0,36602	4,77706	0,03909	0,1	1	-2,22868	-0,24404
	EU 1	1,0% EU 0,25%	-1,Z;								
	EU 1 EU EU	1,0% EU 0,25% 1,0% EU 0,50%	-1,23	3612	0,36602	5,93528	0,01282	0,1	1	-2,52844	-0,5438

Tabela 8.28 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de pinho aos 90 dias de idade.

		Sample Size	Mear	n Standard	Deviation	SE of Mean				
Refe	ferência	3	19,659	916	0,5925	0,34208				
PI	10,25%	3	20,625	503	0,4488	0,25912				
PI	10,50%	3	19,05	542	0,65114	0,37594				
F	PI 1,0%	4	18,177	775	0,23409	0,11705				
One	Way	ANOVA								
ĢΟ	verall .	ANOVA								
		DF Sum of Sq	uares	Mean Square	F Value	Prob>F	1			
N	lodel	3 10,	87078	3,62359	15,4026	6,86656E-4	1			
	Error	9 2,	11733	0,23526			1			
Ч ·	Total	12 12,	98811				1			
Al Al	lull Hypoti Iternative	hesis: The means of a Hypothesis: The mea	all levels ar	re equal or more levels are o	different					
Ni Al At E <i>Fi</i>	Iull Hypot Iternative It the 0.05	hesis: The means of a Hypothesis: The mea level, the population Stics Comparisons	all levels ar ans of one means are	re equal or more levels are o significantly differe	different ent.					
Na At E <i>Fi</i> E <i>M</i>	Iull Hypoti Iternative It the 0.05 It Stati Ieans Tuke	hesis: The means of a Hypothesis: The mea level, the population stics Comparisons y Test	all levels ar ans of one means are	re equal or more levels are o significantly differe	different ent.			0.1		
Ni Ai At ₽ M	Iull Hypoti Iternative It the 0.05 It Stati Ieans Tuke	nesis: The means of a Hypothesis: The mea level, the population stics Comparisons y Test	MeanE	re equal or more levels are o significantly differe	different ent. q Value	Prob	Alpha	Sig	LCL	UCL
Ni Ai At ₽ M	Iull Hypoti Iternative It the 0.05 It Stati Ieans Tuke PI 0,2	resis: The means of a Hypothesis: The mea level, the population stics Comparisons y Test 5% Referência	MeanE 0,965	re equal or more levels are o significantly differe Diff SEM 187 0,39603	q Value 3,4491	Prob 0,13839	Alpha 0,1	Sig 0	LCL -0,08738	UCL 2,019
	Iull Hypoti Iternative It the 0.05 It Stati Ieans Tuke PI 0,2 PI 0,5	resis: The means of a Hypothesis: The mea level, the population stics Comparisons y Test 5% Referência 0% Referência	MeanE 0,965 -0,604	re equal or more levels are or significantly difference Diff SEM 87 0,39603 96 0,39603 92 0,29603	different ent. q Value 3,4491 2,16032	Prob 0,13839 0,46153	Alpha 0,1 0,1	Sig 0 0	LCL -0,08738 -1,65821	UCL 2,019 0,448
Pi Fi	Iull Hypoti Iternative It the 0.05 It Stati Iteans Tuke PI 0,2 PI 0,5 PI 0	resis: The means of 7 Hypothesis: The means of 7 level, the population stics Comparisons y Test 5% Referência 0% Referência ,50% PI 0,25%	MeanE 0,965 -0,604 -1,570	re equal or more levels are o significantly differ 0,39603 96 0,39603 83 0,39603 84 0,23045	q Value 3,4491 2,16032 5,60941	Prob 0,13839 0,46153 0,01425	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -0,08738 -1,65821 -2,62408	UCL 2,019 0,448 -0,517
AI At ■ F/	Iull Hypoti Iternative It the 0.05 It Stati Ieans (PI 0,2 PI 0,2 PI 0,5 PI 0,5	nesis: The means of a Hypothesis: The mea- level, the population stics Comparisons y Test 5% Referência 0% Referência 50% PI 0,25% 0% Referência	MeanE 0,965 -0,604 -1,570 -1,481	re equal or more levels are of significantly different 87 0,39603 96 0,39603 83 0,39603 41 0,37045	q Value 3,4491 2,16032 5,60941 5,65534	Prob 0,13839 0,46153 0,01425 0,01359	Alpha 0,1 0,1 0,1 0,1	Sig 0 1 1	LCL -0,08738 -1,65821 -2,62408 -2,46663	UCL 2,019 0,448 -0,517 -0,496
	Iull Hypoti Iternative At the 0.05 it Stati. Means (PI 0,2 PI 0,5 PI 0,5 PI 1, PI 1, PI 1, PI 1,	hypothesis: The means of a Hypothesis: The measure strics Comparisons y Test 5% Referência 0% Referência 1,0% PI 0,25% 0% Referência 1,0% PI 0,25%	MeanE 0,965 -0,604 -1,570 -1,481 -2,447	re equal or more levels are d significantly differ biff SEM 87 0,39603 89 0,39603 83 0,39603 81 0,37045 28 0,37045	q Value 3,4491 2,16032 5,60941 5,65534 9,34258	Prob 0,13839 0,46153 0,01425 0,01359 4,64688E-4	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 1 1	LCL -0,08738 -1,65821 -2,62408 -2,46663 -3,4325	UCL 2,019 0,448 -0,517 -0,496 -1,462

Tabela 8.29 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de eucalipto aos 180 dias de idade.

		Sa	mple Size	Mea	n	Standard	Deviation	SE of Mear	n			
Re	ferência		3	18,94	739		0,20038	0,1156	9			
El	U 0,25%		3	19,19	932		1,66743	0,9626	9			
E	U 0,50%		3	19,83	325		0,82333	0,4753	5			
E	EU 1,0%		5	18,3	705		0,36814	0,1646	4			
On	e Way /	ANO	VA									
- (Overall A	ANO	VA									
Γ		DF	Sum of Sq	uares	Mea	n Square	F Value	Prob>F				
	Model	3	4,1	18867		1,39622	1,85204	0,20159				
	Error	10	7,5	53882		0,75388						
	Total	13	117	72748								
	Null Hypoth Alternative	esis: T Hypoth	The means of a hesis: The mea	Il levels a ns of one	are equa	al re levels are d	ifferent					
ρ Γ Γ	Null Hypoth Alternative At the 0.05 Fit Statis Means (esis: T Hypoth level, t Stics Comp	The means of a hesis: The mea the population r DATISONS	Il levels a ns of one means are	are equa e or mor e not sig	al re levels are di gnificantly diff	ifferent ferent.					
	Null Hypoth Alternative At the 0.05 Fit Statis Means (Tuke)	esis: T Hypoth level, t Stics Comp / Tes	The means of a hesis: The mea the population r DARISONS	I levels a ns of one means are	are equa e or mor e not sig	al re levels are d gnificantly difi	ifferent ierent.	Prob	Alnha	Sig		
γ	Null Hypoth Alternative At the 0.05 Fit Statis Means (Tuke)	esis: T Hypoth level, f Stics Comp / Tes	The means of a nesis: The mea the population r Darisons St Referência	Il levels a ns of one means are Mean	are equa e or mor e not sig nDiff 5194	al e levels are d gnificantly diff	ifferent ferent.	Prob 0 98373	Alpha 0 1	Sig	LCL -1 60489	UCL 2 10876
μ μ μ μ μ μ μ μ μ μ μ μ μ μ	Null Hypoth Alternative At the 0.05 Fit Statis Means (Tuke) EU 0, EU 0,	esis: T Hypoth level, 1 Stics Comp / Tes 25% 50%	The means of a hesis: The mea the population r Darisons St Referência Referência	Means are 0,25 0,88	nDiff 5194	al e levels are d gnificantly diff SEM 0,70893 0.70893	fferent ferent. q Value 0,50258 1,76716	Prob 0,98373 0.61203	Alpha 0,1 0,1	Sig 0	LCL -1,60489 -0,97096	UCL 2,10876 2.74269
μ μ μ μ μ μ μ μ μ μ μ μ μ μ	Null Hypoth Atternative At the 0.05 Fit Statis Means (Tuke) EU 0, EU 0, EU 0,	esis: T Hypoth level, 1 Stics Comp / Tes 25% 50%	The means of a hesis: The means the population r Darisons St Referência Referência EU 0,25%	Mean 0,25 0,88 0,65	nDiff 5194 3587 3393	al e levels are d gnificantly diff SEM 0,70893 0,70893 0,70893	fferent ferent. 0,50258 1,76716 1,26459	Prob 0,98373 0,61203 0,80811	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -1,60489 -0,97096 -1,2229	UCL 2,10876 2,74269 2,49075
β. 	Null Hypoth Alternative I At the 0.05 Fit Statis Means (Tuke) EU 0, EU 0, EU 0, EU 0	esis: T Hypoth level, 1 Stics Comp / Tes 25% 50% ,50%	The means of a hesis: The means the population r Darisons St Referência Referência EU 0,25% Referência	Mean 0,25 0,88 0,63 -0,55	nDiff 5194 3393 7688	e levels are d gnificantly diff 0,70893 0,70893 0,70893 0,70893 0,63409	q Value 0,50258 1,76716 1,26459 1,28662	Prob 0,98373 0,61203 0,80811 0,80027	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 0	LCL -1,60489 -0,97096 -1,2229 -2,23768	UCL 2,10876 2,74269 2,49075 1,08391
β β β β β β β β β β β β β β	Null Hypoth Alternative I At the 0.05 Fit Statis Means (Tukey EU 0, EU 0, EU 0, EU 0 EU 1 EU 1	esis: T Hypoth level, 1 stics Comp / Tes 25% 50% ,50% ,0% 1,0%	Referência EU 0,25% EU 0,25%	Mean 0,2 0,8 0,6 -0,5 -0,8 0,8 0,6 -0,5 -0,8 0,8 0,8 0,6 -0,5 -0,8 0,8 0,8 0,8 0,6 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	nDiff 5194 3587 3393 7688 2882	al e levels are d gnificantly diff 0,70893 0,70893 0,70893 0,63409 0,63409	fferent ferent. 0,50258 1,76716 1,26459 1,28662 1,84852	Prob 0,98373 0,61203 0,80811 0,80027 0,57914	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 0 0 0	LCL -1,60489 -0,97096 -1,2229 -2,23768 -2,48962	UCL 2,10876 2,74269 2,49075 1,08391 0,83198

Tabela 8.30 - Análise de variância do parâmetro módulo de elasticidade para as pastas contendo fibras de pinho aos 180 dias de idade.

	Sample Size	Mear	n Standard	Deviation	SE of Mea	an			
Referência	3	18,947	'39	0,20038	0,115	69			
PI 0,25%	5	20,163	337	0,87725	0,392	32			
PI 0,50%	5	20,783	332	1,06728	0,47	73			
PI 1,0%	4	18,240)42	0,59605	0,298	02			
One Way A	NOVA								
Overall A	NOVA								
[DF Sum of Sq	uares	Mean Square	F Value	Prob>F				
Model	3 17,	15449	5,71816	8,4658	0,00224				
Error	13 8,	78076	0,67544						
Total	16 25,	93525							
Null Hypothe Alternative H At the 0.05 I	esis: The means of a typothesis: The mea evel, the population	all levels ar ins of one means are	e equal or more levels are o significantly differe	different ent.					
Null Hypothe Alternative H At the 0.05 I <i>Fit Statis</i> <i>Means C</i>	esis: The means of a lypothesis: The mea evel, the population tics Comparisons	all levels ar ins of one means are	e equal or more levels are o significantly differe	different ent.					
Null Hypothe Alternative F At the 0.05 I ■ <i>Fit Statis</i> ■ <i>Means C</i> ■ <i>Tukey</i>	esis: The means of a typothesis: The mea evel, the population tics comparisons Test	all levels ar ins of one means are Mean	e equal or more levels are o significantly differe	different ent.	Prob	Alpha	Sig		1101
Null Hypothe Alternative F At the 0.05 I Fit Statis Means C □ Tukey	esis: The means of <i>i</i> hypothesis: The mea evel, the population <i>tics</i> <i>comparisons</i> <i>Test</i>	Il levels ar ins of one means are <u>MeanE</u> 1 215	e equal or more levels are o significantly differe Diff SEM 98 0.6002	different ent. q Value 2 86516	Prob 0.22836	Alpha 0 1	Sig	LCL -0 30734	UCL 2 73031
Null Hypothe Alternative F At the 0.05 I ■ Fit Statis ■ Means C ■ Tukey PI 0.25 PI 0.55	esis: The means of <i>i</i> hypothesis: The mea evel, the population <i>tics</i> <i>comparisons</i> <i>Test</i> 1% Referência	MeanE 1,215 1,215	e equal or more levels are of significantly differe Diff SEM 98 0,6002 94 0,6002	different ent. q Value 2,86516 4 32593	Prob 0,22836 0.04006	Alpha 0,1	Sig 0	LCL -0,30734 0.31262	UCL 2,73931 3,35926
Null Hypoth Alternative F At the 0.05 I ■ Fit Statis ■ Means C ■ Tukey PI 0,22 PI 0,50 PI 0,50	esis: The means of i typothesis: The means evel, the population tics comparisons Test % Referência 1% Referência 50% Pl 0.25%	MeanE 1,215 1,835 0.619	e equal or more levels are o significantly differ Diff SEM 98 0,6002 94 0,6002 95 0,51979	different ent. 2,86516 4,32593 1.68674	Prob 0,22836 0,04006 0.64178	Alpha 0,1 0,1 0,1	Sig 0 1	LCL -0,30734 0,31262 -0,69928	UCL 2,7393 3,35926 1.93919
Null Hypoth Alternative F At the 0.05 I ■ Fit Statis ■ Means C ■ Tukey PI 0,22 PI 0,50 PI 0,50 PI 0,50 PI 0,50	esis: The means of 1 hypothesis: The mean evel, the population tics comparisons Test Referência 50% PI 0,25% % Referência	III levels ar ins of one means are 1,215 1,835 0,619 -0.706	e equal or more levels are d significantly differ 98 0,6002 94 0,6002 95 0,51979 96 0,6277	different ent. 2,86516 4,32593 1,68674 1.59279	Prob 0,22836 0,04006 0,64178 0.68056	Alpha 0,1 0,1 0,1 0,1	Sig 0 1 0	LCL -0,30734 0,31262 -0,69928 -2,30009	UCL 2,7393 3,35920 1,93919 0.88617
Null Hypothe Alternative H At the 0.05 I <i>Fit Statis</i> <i>Means C</i> PI 0.25 PI 0.25 PI 0.50 PI 0.5 PI 0.7 PI 0.7	esis: The means of 1 hypothesis: The mean evel, the population tics comparisons Test % Referência 50% PI 0,25% % Referência 1,0% PI 0,25%	MeanE 1,215 1,215 1,835 0,619 -0,706 -1,922	e equal or more levels are d significantly differ 98 0,6002 94 0,6002 95 0,51979 96 0,6277 95 0,55132	different ent. 2,86516 4,32593 1,68674 1,59279 4,93266	Prob 0,22836 0,04006 0,64178 0,68056 0,01838	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 1 0 0	LCL -0,30734 0,31262 -0,69928 -2,30009 -3,3222	UCL 2,7393 3,35926 1,93919 0,88617 -0,52369
Null Hypothe Alternative F At the 0.05 I <i>Fit Statis</i> <i>Means C</i> PI 0.22 PI 0.22 PI 0.50 PI 0.50 PI 1.0 PI 1.0 PI 1.0 PI 1.0	esis: The means of 1 hypothesis: The mean evel, the population tics iomparisons Test i% Referência 50% PI 0,25% % Referência 1,0% PI 0,25%	MeanE 1,215 1,215 1,835 0,619 -0,706 -1,922 -2,54	e equal or more levels are o significantly differ 98 0,6002 94 0,6002 95 0,51979 96 0,6277 95 0,55132 29 0,55132	q Value ent. 2,86516 4,32593 1,68674 1,59279 4,93266 6,52294	Prob 0,22836 0,04006 0,64178 0,68056 0,01838 0,0024	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 1 0 0 1 1 1	LCL -0,30734 0,31262 -0,69928 -2,30009 -3,3222 -3,94216	UCL 2,7393 3,3592 1,9391 0,8861 -0,5236 -1,1436

Tabela 8.31 - Análise de variância do parâmetro coeficiente de Poisson para as pastas contendo fibras de eucalipto.

Des	scriptive	Statistics										
		Sample Size	Mean	Stan	dard Dev	/iation	SE 0	fMean				
Ref	ferência	5	0,23476	6	0,	00894		0,004				
EU	J 0,25%	4	0,24996	6	0,	00397	0	,00198				
EU	J 0,50%	4	0,24906	6	0,	01049	0	,00525				
E	U 1,0%	4	0,22568	3	0,	00984	0	,00492				
One	e Way A	NOVA										
Ģ O	verall A	NOVA										
ΙГ	[)F Sum of Sq	uares N	lean Sq	uare I	F Value	Pr	ob>F				
N	lodel	3 0,0	0168	5,6010)7E-4 7	7,37209	0,0	0392				
	Error	13 9,876	97E-4	7,5976	67E-5							
	Total	16 0,0	0267									
E F	it the 0.05 le it Statisi feans C Tukey	ivel, the population r tics omparisons Test	neans are si	ignificantly	y different.							
ШŤ	Tancy	7001	Mean	Diff	SEM	a Vs	alua	Proh	Alnha	Sin		LICI
11	EU 0 2	5% Referência	0	0.0152	0.0058	5 3.67	745	0.0899	0.1	1	3.64349E-4	0.0300
	EU 0.5	0% Referência	0	.0143	0.0058	5 3.45	907	0.11681	0,1	0	-5.38556E-4	0.0291
۱Ц	EU 0,	50% EU 0,25%	-9,029	05E-4	0,0061	5 0,20	717	0,99882	0,1	0	-0,01655	0,0147
	EU 1,	0% Referência	-0,0	00908	0,0058	5 2,19	685	0,43634	0,1	0	-0,02392	0,0057
	EU 1	,0% EU 0,25%	-0,0	02429	0,0061	6 5,57	284	0,00804	0,1	1	-0,03993	-0,0086
	EU 1	,0% EU 0,50%	-0,0	02338	0,0061	5,36	567	0,0105	0,1	1	-0,03903	-0,0077
s s	iig equals 1 iig equals 0	indicates that the m indicates that the m	eans differer eans differer	nce is sign nce is not	nificant at t significant	he 0,1 lev at the 0,1	el. level.					

Tabela 8.32 - Análise de variância do parâmetro coeficiente de Poisson para as pastas contendo fibras de pinho.

		Sa	ample Size	Mean	Standard	Deviation	SE of Mean				
Ref	ferência	3	5	0,2347	6	0,00894	0,004				
P	9 0,25%	6	4	0,2095	1	0,00329	0,00164				
P	91 0,50%	6	4	0,208	3	0,00935	0,00467				
	PI 1,0%	b l	4	0,1953	8	0,00348	0,00174				
One	e Way	ANC	DVA								
Ģ C	Overall	ANC	VA								
		DF	Sum of Sq	uares	Mean Square	F Value	Prob>F	1			
I	Model	3	0,0	00374	0,00125	24,94689	1,14692E-5	1			
	Error	13	6,503	52E-4	5,00271E-5						
	Model 3 0 Error 13 6,50			00420							
N	Total Null Hypo	16 thesis:	The means of a	II levels an	e equal						
N A A	Total Null Hypo Alternative At the 0.0	16 thesis: Hypot 5 level,	The means of a thesis: The mea the population r	Il levels an Ins of one of means are	e equal or more levels are significantly diffe	different ent.		J			
	Total Null Hypo Nternative At the 0.02	16 thesis: Hypot blevel, istics	The means of a thesis: The means of a thesis: The mea	Il levels an ins of one o means are	e equal or more levels are significantly diffe	different ent.]			
	Total Null Hypo Alternative At the 0.00 Fit Stat Means	16 thesis: Hypot Flevel, Stics Com	The means of a thesis: The mea the population r parisons	Il levels ar ins of one of means are	e equal or more levels are significantly diffe	different rent.]			
	Total Aull Hypo Alternative At the 0.09 Fit Stat Means Tuke	16 thesis: Hypot level, istics Com	the means of a thesis: The mea the population r parisons st	Il levels an ins of one of means are MeanD	e equal or more levels are significantly differ	different ent. g Value	Prob	Alpha	Sia	LCL	UCL
	Total Auli Hypo Attenative At the 0.02 Fit Stat Means Tuke	16 thesis: Hypot level, istics Com y Te	The means of a thesis: The mea the population r parisons st Referência	MeanD -0,025	e equal or more levels are significantly differ iff <u>SEM</u> 25 0,00474	different ent. q Value 7,52499	Prob 7,01051E-4	Alpha 0,1	Sig 1	LCL -0,03729	UCL -0,013
	Total Null Hypo Nuternative	16 thesis: Hypot blevel, istics Com ey Te 25%	The means of a thesis: The mea the population i parisons st Referência Referência	MeanD -0,025 -0,026	e equal or more levels are significantly differ iff SEM 25 0,00474 46 0,00474	different ent. q Value 7,52499 7,88565	Prob 7,01051E-4 4,57003E-4	Alpha 0,1 0,1	Sig 1	LCL -0,03729 -0,0385	UCL -0,013 -0,0144
	Total Aull Hypo Alternative At the 0.01 Fit Stat Means Tuke PI 0,1 PI 0,2 PI	16 thesis: Hypot 5 level, 5 le	The means of a thesis: The mea the population i parisons st Referência Referência 6 PI 0,25%	MeanD -0,025 -0,001	e equal or more levels are significantly diffe iff SEM 25 0,00474 46 0,00474 21 0,005	different ent. 7,52499 7,88565 0,34216	Prob 7,01051E-4 4,57003E-4 0,99477	Alpha 0,1 0,1 0,1	Sig 1 1 0	LCL -0,03729 -0,0385 -0,0139	UCL -0,013 -0,0144 0,0114
	Total Aull Hypo Alternative At the 0.09 Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 1	16 thesis: Hypot level, istics Com y Te 25% 50% 0,50% ,0%	The means of a thesis: The mea the population r parisons st Referência Referência 6 PI 0,25% Referência	MeanD -0,025 -0,026 -0,039	e equal or more levels are significantly differ iff SEM 25 0,00474 46 0,00474 21 0,005 38 0,00474	different ent. 7,52499 7,88565 0,34216 11,73706	Prob 7,01051E-4 4,57003E-4 0,99477 8,21614E-6	Alpha 0,1 0,1 0,1 0,1	Sig 1 1 0 1	LCL -0,03729 -0,0385 -0,0139 -0,05142	UCL -0,013 -0,0144 0,0114 -0,0273
■ F	Total Aull Hypo Alternative At the 0.08 Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 1 PI 1 PI 1	16 thesis: a Hypot b level, istics Com y Te 25% 1 50% 1 0,50% ,0% 1	Parisons st Referência Referência 6 PI 0,25% 6 PI 0,25%	MeanD -0,025 -0,026 -0,039 -0,014	e equal or more levels are significantly differ 25 0,00474 46 0,00474 21 0,005 38 0,00474 13 0,005	different ent. 7,52499 7,88565 0,34216 11,73706 3,99592	Prob 7,01051E-4 4,57003E-4 0,99477 8,21614E-6 0,06073	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 1 1	LCL -0,03729 -0,0385 -0,0139 -0,05142 -0,02683	UCL -0,013 -0,0144 0,0114 -0,0273 -0,0014
■ F ■ M	Total Aull Hypo Atternative At the 0.02 Fit Stat Means Tuke PI 0, PI 0, PI 1 PI 1 PI 1 PI 1	16 thesis: Hypot level, istics Com y Te 25% 50% 0,50% ,0% 11,0%	parisons st Referência 6 PI 0,25% 6 PI 0,25% 6 PI 0,50%	MeanD -0,025 -0,026 -0,039 -0,014 -0,012	e equal or more levels are significantly differ 25 0,00474 46 0,00474 21 0,005 38 0,00474 13 0,005 92 0,005	different ent. 7,52499 7,88565 0,34216 11,73706 3,99592 3,65376	Prob 7,01051E-4 4,57003E-4 0,99477 8,21614E-6 0,06073 0,09252	Alpha 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 1 1 1 1 1 1 1	LCL -0,03729 -0,0385 -0,0139 -0,05142 -0,02683 -0,02562	UCL -0,013 -0,0144 -0,0273 -0,0014 -2,27894E-

8.1.2.2 Comportamento sob Compressão Triaxial

A seguir, a Tabela 8.33 e a Tabela 8.34 mostram os resultados de ANOVA para as resistências à compressão triaxial obtidas para cada pressão de confinamento.

Tabela 8.33 - Análise de variância do parâmetro resistências à compressão triaxial para as pastas contendo fibras de eucalipto.

Overall ANOVA DF Sum of Squares Mean Square F Value Prob>F Model 2 175,95693 87,97846 17,95707 0,00175 Error 7 34,29563 4,89938 1000000000000000000000000000000000000	
DF Sum of Squares Mean Square F Value Prob>F Model 2 175,95693 87,97846 17,95707 0,00175 Error 7 34,29563 48,9938	
Model 2 175,95693 87,97846 17,95707 0,00175 Error 7 34,29563 48,9938 4 Total 9 210,25256 4 4 Null Hypothesis: The means of all levels are equal 5 6 4	
Error 7 34,29563 4,89938 Total 9 210,25256	
Total 9 210,25256 Null Hypothesis: The means of all levels are equal	
Null Hypothesis: The means of all levels are equal	
Alternative Hypothesis: The means of one or more levels are different	
At the 0.05 level, the population means are significantly different.	
🖻 Means Comparisons	
☐ Tukey Test	
MeanDiff SEM q Value Prob Alpha Sig LCL U	UCL
REF P1 REF P0 9,66833 1,69055 8,08794 0,0018 0,1 1 5,54281 13	3,79386
REF P2 REF P0 8,26 1,80728 6,46354 0,00632 0,1 1 3,84963 12	2,67037
REF P2 REF P1 -1,40833 1,69055 1,17813 0,69591 0,1 0 -5,53386 2	2,71719
Sig equals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level.	
□ One Way ANOVA	
Overall ANOVA	
UF Sum of Squares Mean Square F Value Prob>F	
Fron 5 29 26658 5 85322	
Total 7 156.06555	
Null Hypothesis: The means of all levels are equal	
Alternative Hypothesis: The means of one or more levels are different	
At the 0.05 level, the population means are significantly different.	
□ Fit Statistics	
P Means Comparisons	
Tukey Test	
MeanDiff SEM q Value Prob Alpha Sig LCL	UCL
EU 0,25% P1 EU 0,25% P0 8,93167 2,20857 5,71922 0,02238 0,1 1 3,12669 1	14,73665
EU 0,25% P2 EU 0,25% P0 7,64333 1,9754 5,47195 0,02654 0,1 1 2,4512 1.	12,83546
EU 0,25% FZ EU 0,25% FT -1,28833 2,20857 0,82496 0,83405 0,1 0 -7,09331	4,51003
Sig equals 1 indicates that the means difference is significant at the 0,1 level.	
Sig equals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level.	
sig equals 1 indicates that the means difference is significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level.	
Sig equals 1 mocases that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. One Way ANOVA Discrete Concerning ANOVA	
Sig equals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA DF Sum of Sources Mean Source E Value Prob>E	
sig equase 1 mocases mat the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. One Way ANOVA Overail ANOVA DF Sum of Squares Mean Square Nodel 1 9.163016 91.63016 34.28709 0.00993	
Sig equals 1 mocroses mat the means difference is significant at the 0,1 level. Sig equals 0 molcoses that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Model 1 9,63016 34,28709 0,01732 2,67244	
Sig equals 1 mocress mat the means difference is significant at the 0,1 level. Sig equals 0 microases that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Image: Significant at the 0,1 level. Problem DF Sum of Squares Model 1 91,63016 34,28709 91,63016 34,28709 91,63016 34,28709 90,94748 1	
Sig equals 0 indicates that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. Cone Way ANOVA Overall ANOVA Dre Sum of Squares Model 1 91,63016 91,63016 34,28709 0,00993 Error 3 8,01732 2,67244 Total 4 99,64748 Nul Hypothesis: The means of all levels are equal	
Sig equals 1 mocases mat the means difference is agnificant at the 0,1 level. Sig equals 0 molcases that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 91,63016 91,63016 91,63016 2,67244 Total 4 99,64748 Nul Hypothesis: The means of all levels are digital Attentive Hypothesis: The means of all levels are different	
Sig equals 1 moceses mat the means difference is significant at the 0,1 level. Sig equals 0 microses that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Image: Significant at the 0,1 level. Overall ANOVA Image: Significant at the 0,1 level. Image: Signific	
Sig equals 1 mocases mat the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Image: Significant at the 0,1 level. Significant at the 0,1 level. Image: Significant at the 0,1 level. <t< td=""><td></td></t<>	
Sig equals 1 nocases mat the means difference is agnificant at the 0,1 level. Sig equals 0 notcates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Image: Significant of Squares Mean Square F Value Prob>F Model 1 91,63016 Image: Significant of Squares Mean Square F Value Prob>F Image: Significant of Squares Mean Square F Value Prob>F Image: Significant of Squares Mean Square F Value Prob>F Image: Significant of Squares Mean Square F Value Prob>F Image: Significant of Squares F Value Prob>F Image: Significant of F Value Prob>F Image: Signifi	
Sig equals 1 nocess mat the means difference is significant at the 0,1 level. Sig equals 0 notoates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,63016 91,63016 9,64748 1 19,63016 2,67244 1 19,63016 1 99,64748 Nul Hypothesis: The means of no more levels are different At the 0,05 level, the population means are significantly different. # If Statistics Means Comparisons Tukey Test	
Sig equals 1 mocases mat the means difference is significant at the 0,1 level. Sig equals 0 microses that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Image: the significant at the 0,1 level. Image: the significant at the 0,1 level. One Way ANOVA Image: the significant at the 0,1 level. Image: the sign	UCL
Sig equals 1 mocases mat the means difference is significant at the 0.1 level. Sig equals 0 molacates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA DF Sum of Squares Mean Square F Value Prob>F Model 1 91,63016 91,63016 34,28709 0,00993 Error 3 8,01732 2,67244	UCL 2,25032
Sig equals 1 mocases mat the means difference is significant at the 0,1 level. Sig equals 0 molcases that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Model 1 9,63010 91,63016 24,28709 0,00993 Error 3 8,01732 2,67244 0 Nul Hypothesis: The means of one orne levels are different At the 0.5 level, the population means are significantly different. B: Fits Statistics Mean Comparisons Tukey Test Lossoph P2 EU 0,50% P0 8,73833 1,49232 8,28095 0,00993 0,1 1 5 9,64748	UCL 2,25032
Sig equals 1 motoses mat the means difference is significant at the 0,1 level. Sig equals 0 motoses that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA 0 1 1 91,63016 91,63016 34,28709 0,00993 Error 3 8,01732 2,67244 Total 4 99,64748 Nul Hypothesis: The means of one once levels are different At the 0.05 level, the population means are significantly different. Error 1 Sig equals 1 motoses that the means of one once levels are different At the 0.05 level, the population means are significantly different. Error 1 Sig equals 1 motoses that the means of the ore most levels are different At the 0.05 level, the population means are significantly different. Sig equals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 1 indicates that the means difference is dignificant at the 0,1 level.	UCL 2,25032
Sig equals 1 mocases mat the means difference is significant at the 0,1 level. Sig equals 0 molcates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,030 91,63016 9,040 1 9,040 0,00983 10,041 91,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,63016 11,041 1,90,64748 11,041 1,90,64748 11,041 1,90,64748 11,041 1,041,041 11,041 1,041,041 11,041 1,041,041 11,041 1,041,041 11,041 1,041,041 11,041 1,041,041 11,042 1,0422 12,0435 1,0422 12,0436 1,04222 12,0425	UCL 12,25032
Sig equals 1 mocases mat the means difference is agnificant at the 0,1 level. Sig equals 0 molcases that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,63016 91,63016 9,64748 Nul Hypothesis: The means of off come levels are different. 8: Fit Statistics Means Comparisons 7: Tukey Test EU,050% P2 EU 0,50% P0 8: gequals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 1 indicates that the means difference is significant at the 0,1 level. 9: qequals 1 indicates that the means difference is significant at the 0,1 level. 9: qequals 1 indicates that the means difference is significant at the 0,1 level. 9: qequals 1 indicates that the means difference is significant at the 0,1 level. 9: qequals 1 indicates that the means difference is significant at the 0,1 level. 9: qequals 1 indicates that the means difference is not significant at the 0,1 level. 9: qequals 1 indicates that the means difference is not significant at the 0,1 level. 9: qequals 1 indicates that the means difference is not significant at the 0,1 level. 9: qequals 1 indicates that the means difference is not significant at the 0,1 level.	UCL 12,25032
Sig equals 1 motoses that the means difference is significant at the 0,1 level. Sig equals 0 motoses that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Overall ANOVA Model 1 9,01732 2,67244 1014 99,64748 Null Hypothesis: The means of all evels are equal Attentive Hypothesis: The means of all evels are different At the 0.5 level, the population means are significantly different. B <i>MeanScompatibility</i> 0,604 PD (Suppress) Means Comparisons Tukey Test Eu 0,50% P2 EU 0,50% P0 8,73833 1,49232 8,28095 0,00993 0,1 1 5,22635 1 Sig equals 1 indicates that the means difference is significant at the 0,1 level. Sig equals 1 indicates that the means difference is not significant at the 0,1 level. © One Way ANOVA © One Way ANOVA [] One Way ANOVA	UCL 12,25032
Sig equals 1 mocess mat the means difference is agnificant at the 0,1 level. Sig equals 0 molastes that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,64748 Nul Hypothesis: The means of of environ levels are different. At the 0.05 level, the population means are significantly different. 9, Maans Comparisons 9, Means Comparisons 9, equals 0 indicates that the means difference is significant at the 0,1 level. 9, equals 0 indicates that the means difference is significant at the 0,1 level. 9, Means Comparisons 9, Means Comparisons 9, dequals 0 indicates that the means difference is significant at the 0,1 level. 9, equals 0 indicates that the means difference is significant at the 0,1 level. 9, equals 0 indicates that the means difference is not significant at the 0,1 level. 9, One Way ANOVA 9, One Way ANOVA 9, One Way ANOVA	UCL 12,2503;
Sig equals 1 mocases mat the means difference is agnificant at the 0.1 level. Sig equals 0 molcases that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Model 1 91,63016 9,64748 Nul Hypothesis: The means of off or mole levels are different At the 0.0 level, the population means are significantly different At the 0.0 level, the population means are significantly different. 9 <i>Fits</i> Statistics 7 MeanDiff Sig equals 1 indicates that the means difference is significant at the 0.1 level. Sig equals 1 indicates that the means difference is significant at the 0.1 level. 9 Prob 9 Overall ANOVA 10 1 levels are significant at the 0.1 level. 11 Sig equals 1 indicates that the means difference is not significant at the 0.1 level. 12 Overall ANOVA 13 Overall ANOVA 14 Overall ANOVA 15 Overall ANOVA	UCL 12,25037
Sig equals 1 motases mat the means difference is significant at the 0,1 level. Sig equals 0 motases mat the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,63748 101 Hypothesis: The means of a levels are equal Alternative Hypothesis: The means of all evels are equal Alternative Hypothesis: The means of all evels are equal Alternative Hypothesis: The means of all evels are equal Alternative Hypothesis: The means of all evels are equal Alternative Hypothesis: The means of all evels are different. B <i>Fit Statistics</i> Mean Comparisons Tukey Test U.0.50% P2 EU 0.50% P0 8.73833 14922 8.28095 0.00930 0.1 15.22635 1 Sig equals 1 indicates that the means difference is significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. Sig equals 1 indicates that the means difference is not significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA OP Functin	UCL 12,25037
Sig equals 1 mocess mat the means difference is sgniftcant at the 0.1 level. Sig equals 0 molcates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Model 1 9,64748 Nul Hypothesis: The means of or one work levels are different. At the 0.05 level, the population means are significantly different. At the 0.05 level, the population means are significantly different. If I Statistics Means Comparisons Image: United the means difference is significant at the 0.1 level. Sig equals 1 indicates that the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is indicates that the means difference is indicates that the means difference is indicates that the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the means difference is not significant at the 0.1 level. Image: United the tinterence is not significant at the 0.1 level.	UCL 12,2503;
Sig equals 1 notaces mat the means difference is significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Image: the observed of the observed o	UCL 12,25033
Sig equals 1 notacess that the means difference is significant at the 0,1 level. Sig equals 0 indicates that the means difference is not significant at the 0,1 level. One Way ANOVA Overall ANOVA Model 1 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 91,63016 9,000 90,64748 Null Hypothesis: The means of one or more levels are different Attentive Hypothesis: The means of all levels are equal Altentive Hypothesis: The means of one or more levels are different. B <i>Fit Statistics</i> Image: Comparisons Ima	UCL 12,25033
Sig equals 1 motases mat the means difference is significant at the 0,1 level. Sig equals 0 motases that the means difference is not significant at the 0,1 level. Overall ANOVA Overall ANOVA Model 1 9.011 Pyothesis: The means of of a row levels are different. At the 0.05 level, the population means are significant y different. 8.11 El Statistics 9.11 Model 9.11 Hypothesis: The means of on a row levels are different. At the 0.05 level, the population means are significantly different. 8.11 El Statistics 9.11 Means of one or row levels are different. At the 0.50 level, the population means are significant at the 0,1 level. 9.02 Means Comparisons 11 El 0,50% P2 El 0,50% P0 8,73833 1,49232 8,28095 0,00993 0,1 1 5,22635 1 9.11 Sig equals 1 indicates that the means difference is significant at the 0,1 level. 12 One Way ANOVA 13 or equals 1 indicates that the means difference is not significant at the 0,1 level. 14 One Way ANOVA 15 One Way ANOVA 16 One Way ANOVA 17 One Way ANOVA 18 or out is possible in indicates that the means difference is significant at the 0,1 level. 19 One Way ANOVA 10 Or Overall ANOVA 10 Or overall ANOVA 10 Or overall ANOVA	UCL [2,2503:
Sig equals 1 motases mat the means difference is significant at the 0.1 level. Sig equals 0 motases that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Model 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 91,63016 1 1 1 91,63016 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>UCL 12,25033</td>	UCL 12,25033
Sig equals 1 notacess that the means difference is significant at the 0.1 level. Sig equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Model 1 9.01 PS 91,63016 9.02 PS 91,63016 9.04 PS 90,64748 Null Hypothesis: The means of all evels are equal Attentive Hypothesis: The means of all evels are different. P Fit Statistics Means Comparisons P Tukey Test U.0.50% P2 EU 0.50% P0 8,73833 1.49232 8,28095 0.00933 1.1 5,22635 1 Sig equals 1 indicates that the means difference is significant at the 0.1 level. 3 Sig equals 1 indicates that the means difference is significant at the 0.1 level. 3 P One Way ANOVA Overall ANOVA P Overall ANOVA 0.08323 One Way ANOVA 0.08323	UCL 12,2503;
Big equats 1 indicates that the means off freence is not significant at the 0.1 level. Sig equats 0 indicates that the means off freence is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Overall ANOVA Model 1 9.01732 2,67244 1014 99,64748 Null Hypothesis: The means of all levels are equal Attentive Hypothesis: The means of one once levels are different Attentive Hypothesis: The means of one once levels are different At the 0.05 level, the population means are significant at the 0.1 level. Big equats 1 indicates that the means difference is significant at the 0.1 level. Big equats 1 indicates that the means difference is anginificant at the 0.1 level. Big equats 1 indicates that the means difference is significant at the 0.1 level. Big equats 1 indicates that the means difference is significant at the 0.1 level. Big equats 1 indicates that the means difference is not significant at the 0.1 level. Big equats 1 indicates that the means difference is and significant at the 0.1 level. Big equats 1 indicates that the means difference is and significant at the 0.1 level. Big equats 1 indicates that the means difference is and significant at the 0.1 level. Big equats 1 indicates that the means difference is and significant at the 0.1 level. Big equats 1 indicate	UCL (2,2503)
Big equals 1 indicates that the means difference is not significant at the 0.1 level. Big equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Image: the observed of the obse	UCL (2,2503)
Big equals 1 indicates that the means difference is not significant at the 0.1 level. Big equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overail ANOVA Image: the population means of a significant gradient of the population means are significant gradient of the population means are significant gradient at the 0.1 level. Image: the population means of one or more levels are different at the 0.5 level. Image: the population means of one or more levels are different. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are significant at the 0.1 level. Image: the population means are on or more levels are different. Image: the population means are on the population means are on the population means are different.	UCL (2,2503)
Big equats 1 indicates that the means of if reence is not significant at the 0.1 level. Sig equats 0 indicates that the means of if reence is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Model 1 9.011 Yours 101 Yours <t< td=""><td>UCL 2.2503: UCL 14,3923 19,7553</td></t<>	UCL 2.2503: UCL 14,3923 19,7553
Big equals 1 indicates that the means difference is not significant at the 0.1 level. Big equals 0 indicates that the means difference is not significant at the 0.1 level. One Way ANOVA Overall ANOVA Image: Indicates that the means difference is not significant at the 0.1 level. Overall ANOVA Image: Indicates that the means of a levels are different at the 0.5 level. Image: Indicates that the means of all levels are equal Attentive Hypothesis: The means of an ornee levels are different. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indicates that the means difference is rightficant at the 0.1 level. Image: Indi	UCL (2,2503) UCL 14,3923 19,7553 13,0106
Sig equals 1 modestes that the means difference is not significant at the 0.1 level. Sig equals 0 modestes that the means difference is not significant at the 0.1 level. One Way ANOVA Our control of the second of the s	UCL 22503; UCL 14,39233 13,0106

Tabela 8.34 - Análise de variância do parâmetro resistências à compressão triaxial para as pastas contendo fibras de pinho.

Ш	E	=	Overall	ANC	VA								
Ш				DF	Sum of Squar	es Mean	Square	F Value	Prob>F				
Ш			Model	2	0,914	82	0,45741	0,71819	0,52035				
Ш			Error	7	4,458	27	0,6369		-				
11		Ч	Total	9	5,373	09							
			Null Hype	thesis:	The means of all lev	els are equal							
			Alternativ	e Hypot	thesis: The means o	f one or more	levels are di	fferent					
			At the 0.0	5 level,	the population mean	ns are not sigr	ificantly diff	erent.					
ľ	-0	÷	Fit Star	tistics									
	E	Ę.	Means	Com	parisons								
			🕂 Tuke	ey Te	st								
						MeanDi	ff SEN	l q Val	ue Pro	Alph	a Si	g LCL	UCL
			L PIO,	25% F	P1 PI 0,25% P0	-0,6966	7 0,609	53 1,61	164 0,520	36 0 ,	1	0 -2,18412	2 0,79078
		٦	PI 0,	25% F	P2 PI 0,25% P0	-0,	1 0,609	53 0,232	202 0,98	53 0,	1	0 -1,58745	1,38745
			PI 0,	25% F	P2 PI 0,25% P1	0,5966	7 0,651	61 1,294	197 0,648	31 0,	1	0 -0,99349	2,18682
L			Sig equals	s 1 indic	ates that the means	difference is	significant a	t the 0,1 leve	L				
			Sig equals	s 0 indic	ates that the means	difference is	not significa	nt at the 0,1 I	evel.				
L	-	-											
Ŀ	-	0	no 14/m										
h	: E	0	ne vvay	ANO	VA VA								
	E	ī,	Overall	ANO	VA	- Maan (E Velue	Deales E				
			Madal	DF	Sum of Square	s Mean :	square	F Value	Prob>F				
			Error	2	170 426	2 0	72022	0,00754	0,99249				
1		Ч	Total	8	178 8840	13 28	,13922						
			Total		110,0040	12							
			Alternative	tnesis: a Hypot	hesis: The means of all lev	one or more k	evels are diff	erent					
			At the 0.0	5 Iowal									
				o ievel,	the population mean	s are not signi	ficantly diffe	rent.					
μ	-	+	Fit Stat	istics	the population mean	s are not signi	ficantly diffe	rent.					
ľ	-	+	Fit Stat Means	istics Com	the population mean	s are not signi	ficantly diffe	rent.					
	6	Ð F	Fit Stat Means ⊡ Tuke	istics Comp	the population mean: Darisons St	s are not signi	ficantly diffe	rent.					
	6	•	Fit Stat Means □ Tuke	istics Comp ey Te	the population mean parisons st	s are not signi	ficantly diffe	q Valu	e Prob	Alpha	Sig	LCL	UCL
	6	•	Fit Stat Means Tuke	istics Comp ey Te: 50% F	the population mean parisons st P1 PI 0,50% P0	MeanDiff	SEM 3,8561	q Valu 1 0,1045	e Prob 2 0,9969	Alpha 0,1	Sig	LCL -9,98754	UCL 9,41754
	8	+	Fit Stat Means Tuke PI0, PI0,	Solution Comp y Tes 50% P 50% P	the population mean parisons st 21 PI 0,50% P0 22 PI 0,50% P0	MeanDiff -0,285 -0,71	SEM 3,8561 6,0970	q Valu 1 0,1045 5 0,1646	e Prob 2 0,9969 8 0,9925	Alpha 0 0,1 5 0,1	Sig 0	LCL -9,98754 -16,05107	UCL 9,41754 14,63107
	8	+	Fit Stat Means □ Tuke PI0, PI0, PI0,	50% F 50% F 50% F	the population mean parisons st 21 PI 0,50% P0 22 PI 0,50% P0 22 PI 0,50% P1	MeanDiff -0,285 -0,71 -0,425	SEM 3,8561 6,0970 6,0970	q Valu 1 0,1045 5 0,1646 5 0,0985	e Prob 2 0,9969 8 0,9925 8 0,9973	Alpha 0 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	8		Fit Stat Means Tuke PI0, PI0, PI0,	50% F 50% F 50% F	the population mean parisons st 21 PI 0,50% P0 22 PI 0,50% P0 22 PI 0,50% P1 ates that the means	MeanDiff -0,285 -0,71 -0,425 difference is a	SEM 3,8561 6,0970 6,0970	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0.1 level	e Prob 2 0,9969 8 0,9925 8 0,9973	Alpha 0 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	8		Fit Stat Means Tuke PI0, PI0, PI0, Sig equals Sig equals	<i>Com</i> <i>Com</i> <i>y Te</i> 50% F 50% F 50% F 50% F	the population mean parisons st P1 PI 0,50% P0 P2 PI 0,50% P1 ates that the means ates that the means	MeanDiff -0,285 -0,71 -0,425 difference is s	SEM 3,8561 6,0970 6,0970 ignificant at iot significant	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. t at the 0,1 level.	e Prob 2 0,9969 8 0,9925 8 0,9973	Alpha 9 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	8	-	Fit Stat Means Tuke PI0, PI0, PI0, Sig equals	50% F 50% F 50% F 50% F 50% F 50% F	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P1 ates that the means ates that the means	MeanDiff -0,285 -0,71 -0,425 difference is s	SEM 3,8561 6,0970 6,0970 ignificant at iot significant	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. t at the 0,1 level.	e Prob 2 0,9969 8 0,9925 8 0,9973 rel.	Alpha 9 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	8		Fit Stat Means Tuke PI 0, PI 0, Sig equals Sig equals	Sistics Comp ey Tes 50% F 50% F 50% F 50% F	the population mean Darisons St 1 PI 0,50% PO 2 PI 0,50% PO 2 PI 0,50% P1 ates that the means ates that the means	MeanDiff -0,285 -0,71 -0,425 difference is s	SEM 3,8561 6,0970 6,0970 ignificant at tot significant	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. t at the 0,1 level	e Prob 2 0,9969 8 0,9925 8 0,9973 el.	Alpha 9 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	6		Fit Stat Means Tuke PI 0, PI 0, PI 0, Sig equals Sig equals	Sistics Comp ey Te: 50% F 50% F 50% F 50% F	the population mean DAI/SO/IS St 21 PI 0,50% PO 22 PI 0,50% P1 22 PI 0,50% P1 ates that the means ates that the means	MeanDiff -0,285 -0,71 -0,425 difference is s difference is n	SEM 3,8561 6,0970 6,0970 ignificant at tot significant	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 at the 0,1 level	e Prob 2 0,9969 8 0,9925 8 0,9973 el.	Alpha 9 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI 0, PI 0, PI 0, Sig equals Sig equals	Solution Sol	the population mean Dar/ISO/IS St P1 P1 0,50% P0 P2 P1 0,50% P0 P2 P1 0,50% P1 ates that the means ates that the means DVA	MeanDiff -0,285 -0,71 -0,425 difference is s	SEM 3,8561 6,0970 6,0970 6,0970 ignificant at tot significant	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. t at the 0,1 level	e Prob 2 0,9969 8 0,9925 8 0,9973 rel	Alpha 9 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, Sig equals Sig equals Ne Way Overall	Solution Sol	be population mean parisons St 1 PI 0,50% P0 2 PI 0,50% P0 2 PI 0,50% P1 ates that the means ates that the means DVA DVA	MeanDiff -0,285 -0,71 -0,425 difference is a difference is a	SEM 3,8561 6,0970 6,0970 6,0970 ignificant at tot significan	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. t at the 0,1 level.	e Prob 2 0,9969 8 0,9925 8 0,9973 el.	Alpha 0,1 5 0,1 3 0,1 1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, Sig equals Sig equals Ne Way Overall	ANC	be population mean parisons st P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 ates that the means ates that the means ates that the means by VA VVA Sum of Squar	MeanDiff -0,285 -0,71 -0,425 difference is s difference is s	Square	q Valu 1 0,1045 5 0,1646 5 0,0965 the 0,1 level. t at the 0,1 level. F Value 40.0450	e Prob 2 0,9969 8 0,9925 8 0,9973 el. ₽rob≻F	Alpha 0 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, PI0, Sig equals Sig equals Sig equals Sig equals	Vistics Compey Test 50% F 50%	be population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 P2 PI 0,50%	MeanDiff -0,285 -0,71 -0,425 difference is s difference is r es Mean 54 1 0	SEM 3,8561 6,0970 6,0970 6,0970 9,0970 9,017	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. at the 0,1 level. F Value 10,01596	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 5 0,01783	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Plo, Plo, Plo, Plo, Sig equals Sig equal	/ ANCC ANCC DF 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 P1 0,50% P1 P2 PI 0,50% P1	MeanDiff -0,285 -0,71 -0,425 difference is a difference is a 6 Mean 54 1 95 40	SEM 3,8561 6,0970 6,0970 ignificant at tot significant 2,15727 1,21379	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. at the 0,1 level. at the 0,1 level. at the 0,1 level. 1 0,01596	e Prob 2 0,9969 8 0,9925 8 0,9973 et. Prob≻F 0,01783	Alpha 9 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	3		Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 0, Sig equals Sig equals Sig equals Sig equals	/ ANCC DF 2 7 7	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 ates that the means ates that the means by VA DVA DVA Sum of Squar 24,314 6,068 30,383	MeanDiff -0,285 -0,71 -0,425 difference is a difference is a 54 1 95 49	SEM 3,8561 6,0970 6,0970 6,0970 ignificant at tot significant 8 2,15727 1,21379	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 at the 0,1 level. 1 F Value 10,01596	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 6 0,01782	Alpha 0 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	3		Fit Stat Means Tuke PI 0, PI 0, PI 0, PI 0, Sig equals Sig equals Sig equals Null Hype Null Hype Alternor	<i>istics</i> <i>Com</i> / <i>Com</i> /	the population mean parisons St P1 P1 0,50% P0 P2 P1 0,50% P0 P2 P1 0,50% P1 P2 P1 0,50%	MeanDiff -0,285 -0,711 -0,425 difference is s difference is s 54 1 95 49 vels are equal	SEM 3,8561 6,0970 6,0970 6,0970 6,0970 6,0970 6,0970 1,000	q Valu 1 0,1045 5 0,0985 the 0,1 level. at the 0,1 level. F Value 10,01596	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 0,01783	Alpha 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, PI0, Sig equals Sig equals Sig equals Nul Hypo Alternation	istics Comp py Te: 50% F 50% F 50% F 50% F 1 Indication 6 NVC 0 Indication 7 ANCC DF 2 5 7 1 1 Expendent 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 P2 PI 0,50%	MeanDiff -0,285 -0,285 -0,71 -0,425 difference is r difference is r difference is r 4 difference is r 4 difference is r 4 difference is r 4 y 5 4 y 5 4 y 5 4 y 5 4 5 4 1 y 5 4 5 4 1 y 5 4 5 4 9 5 4 9 5 8 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	SEM 3,8561 6,0970 6,0970 6,0970 ginificant at tot significant Square 2,15727 1,21379 levels are da antiv different	q Valu 1 0,1045 5 0,0985 5 0,0985 t at the 0,1 leval t at the 0,1 leval t at the 0,1 leval ifferent nt.	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 0,01783	Alpha 9 0,1 3 0,1 3 0,1 4 0,1 1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, PI0, PI0, Sig equals Sig equals Sig equals Sig equals Nodel Error Total Null Hype Alternativ Attended	istics Comp py Te: 50% F 50% F 50% F 50% F 1 indication 7 ANCC ANCC DF 2 5 7 1 thesis: e Hypoto 5 level, Kodic	the population mean DariSONS St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 altes that the means attes that the means by VA DVA DVA DVA DVA DVA DVA The means of all less the population means the population means	MeanDiff -0,285 -0,71 -0,425 difference is a difference is a difference is a for a second sec	SEM 3,8561 6,0970 6,0970 6,0970 1,077 1,2177 1,21379 levels are d antly differe	q Valu 1 0,1045 5 0,1646 5 0,0945 10,01596 10,01596 10,01596 10,01596	e Prob 2 0,9969 8 0,9925 8 0,9973 el Prob>F 5 0,01782	Alpha 0 0,1 5 0,1 8 0,1 1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI0, PI0, PI0, Sig equals Sig equals Sig equals Sig equals Not equals No	istics Comp py Te: 50% F 50% F 5	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 P2 PI 0,50%	es Mean 54 en out signification -0,285 -0,71 -0,425 difference is s difference	SEM 3,8561 6,0970 6,0970 ignificant at tot significant 2,15727 1,21379 levels are d antly differe	q Valu 1 0,1045 5 0,1045 5 0,0952 the 0,1 level. 1 at the 0,1 level. 1 10,01596 1 ifferent nt. 1	e Prob 2 0,9969: 8 0,9925: 8 0,9973 el. Prob>F 5 0,01783	Alpha 9 0,1 5 0,1 3 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Stat Means Tuke PI 0, PI 0	istics Comp py Te: 50% F 50% F 5	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50%	MeanDiff -0,285 -0,71 -0,425 difference is s difference is s 95 49 vels are equal for or more s s are signific	SEM 3,8561 6,0970 6,0970 6,0970 ignificant at iot significant 2,15727 1,21379 levels are d antly differe	q Valu 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 t at the 0,1 level. 1 T0,01596 1 ifferent nt.	e Prob 2 0,9969 8 0,9925 8 0,9973 et Prob≻F 5 0,01783	Alpha 0 0,1 0 0,1 8 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
			Fit Statase	istics Comp ey Te: 50% F 50% F 50% F 50% F 50% F 1 Indica 0 Indica	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P3 PI 0,50%	A are not signi MeanDiff -0,285 -0,71 -0,425 difference is a difference is a difference is a sifference is a difference is a sifference is a siffere	SEM 3,8561 6,0970 6,0970 6,0970 ignificant at iot significant sign	q Value 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 at the 0,1 level. 1 10,01596 1 ifferent nt. 1	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 0,01783	Alpha 9 0,1 5 0,1 8 0,1	Sig 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,53107 14,91607
			Fit Statemative	istics Comp y Te: 50% F 50% F 50% F 50% F 50% F 1 indice 0 indice 0 indice 7 ANCC DF 2 5 7 thesis 5 level, tistics Comp	the population mean parisons st P1 PI 0,50% P0 P2 PI 0,50% P1 2 PI 0,50% P1	es Mean MeanDiff MeanDiff	SEM SEM SEG 3,8561 3,8561 6,0970 6,0970 6,0970 6,0970 1,21727 1,21379 Ievels are d antly differe	q Valu 1 0,1045 5 0,1645 5 0,0645 6 0,0985 the 0,1 level. 1 at the 0,1 level. 1 10,01596 1 ifferent nt. q Value 1	e Prob 2 0,9969 8 0,9925 8 0,9973 el. Prob>F 6 0,01783 Prob	Alpha 0,11 3,0,1 3,0,1 4 4 4 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig 0 0 0	LCL -9,98754 -16,05107 -15,76607	UCL 9,41754 14,63107 14,91607
	E E E E E E E E E E E E E E E E E E E		Fit Stata	/ ANCC / ANCC	the population mean parisons St P1 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P0 P2 PI 0,50% P1 P1 0,50% P0 P2 PI 0,50% P1 P1 0,50% P0 P2 PI 0,50% P0 P	MeanDiff -0,285 -0,71 -0,425 difference is a difference is a difference is a difference is a residue of the second the second second MeanDiff 3,695 -0,71 -0,425 -0,425 -0,	Sem Square 2,15727 1,21379 Levels are d antly differe SEM 0,95412	q Value 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 at the 0,1 level. 1 10,01596 10,01596 ifferent nt. q Value 5,4761 5,4761 5,4761	e Prob 2 0,9969 8 0,9925 8 0,9973 et Prob≻F 5 0,01783 Prob≻F 8 0,02645	Alpha 9 0,1 5 0,1 8 0,1 1 8 0,1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig 0 0 0 0	LCL -9.98754 -16.05107 -15.76607 -15.76607	UCL 9,41754 14,63107 14,91607
			Fit Stata Means P Tuke P 10, P	(istics (com) (istics (com) (istics (com)	the population mean parisons St P1 PI 0,50% P0 P2 PI 1,0% PD P2 PI 1,0	weanDiff -0,285 -0,71 -0,425 -0,71 difference is a	SEM Sem 3,8561 6,0970 6,0970 6,0970 ignificant at at significant at a significant at at antity difference and antity difference at a significant at a significan	q Value 1 0,1045 5 0,1646 5 0,0985 the 0,1 level. 1 at the 0,1 level. 1 10,01596 1 ifferent nt. 5,4761 0,5712: 7,5712:	e Prob 2 0,9969 8 0,9925 8 0,9973 el Prob>F 3 0,01783 9 0,02645 2 0,91546	Alpha 0 0,1 3 0,1 3 0,1 4 0,1 0,1 0,1 0,1	Sig 0 0 0 0	LCL -9,98754 -16,05107 -15,76607 -15,76607 -15,76607 -1,1872 -2,45076 -2,45076	UCL 9,41754 14,53107 14,91607 14,91607
			Fit Stata Means Tuke Pi 0, Pi 1, Pi	(istics istics Com _µ y Te: 50% P 50% P 50% P 1 Indication 0 indication 0 indication (ANCC ANC AN	the population mean parisons st 1 PI 0,50% P0 2 PI 0,50% P1 2 PI 0,0% P1 2 PI 1,0% P0 2 PI 1,0% P1	es are not signi MeanDiff -0,285 -0,71 -0,425 difference is s difference is s 54 95 49 rels are equal rels are equal ne or suprific MeanDiff 3,695 -0,445 -3,255	SEM 3,8561 6,0970 6,0970 9,971 10,0970 9,971 11,21379 levels are dannly differe SEM 0,95412 0,95412	q Value 1 0,1045 5 0,1646 5 0,0986 the 0,1 level. 1 the 0,0 level. 1	 Prob 2 0,9969; 8 0,9923; et Prob>F 0,01783 0,01783 0,01783 0,01783 0,02645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645 0,012645	Alpha 0,0,1 3,0,1 4 0,1 0,1 0,1 0,1 0,1	Sig 0 0 0 0 0 0 0 0 1	LCL -9,98754 -16,05107 -15,76607 -15,76607 LCL 1,1872 -2,45076 -5,7578	UCL 9,41754 14,63107 14,91607 14,91607 6,2028 3,34076 -0,7422

8.1.2.3 Comportamento sob Flexão

Da Tabela 8.35 à Tabela 8.39 são apresentados os resultados de ANOVA para os parâmetros de tensão de primeira fissura ($f_{F_{-1}}{}^{a}_{,f}$), deslocamento de primeira fissura ($\delta_{1}{}^{a}_{,f}$) e índice de tenacidade (FT225) para as misturas estudadas.

Tabela 8.35 - Análise de variância do parâmetro tensão de primeira fissura para as pastas contendo fibras de eucalipto.

		-	Samp	le Size	Mean	Star	ndard Devi	ation	SE d	ofMean				
				4	8,0010	7	0,3	3404	0	,16702				
То	neãr			4	8,5120	3	0,6	5997	0	,32999				
10	maat			2	7,3253	8	0,0	2991	0	,02115				
	2		6,6884	9	0,2	6808	0	,18956						
On	ie W	/ay	ANO	VA										
2 (Over	rall .	ANO	VA										
			DF	Sum of	Squares	Mea	n Square	F Valu	le	Prob>F				
	Mod	lel	3		5,0918)	1,6973	7,921	11	0,00885				
	Erre	or	8		1,714	2	0,21428							
	Tot	al	11		6 8060									
		a.			0,0000	·								
	Null H	lypot	hesis: 1	The means	of all level	s are equa	al							
-	Null H Alterna	lypot ative	hesis: Hypot	The means hesis: The	of all leve	s are equa	al e levels are d	ifferent						
_	Null H Alterna At the	lypoti ative 0.05	hesis: 1 Hypot level,	The means hesis: The the popula	of all leve means of (tion means	s are equa ne or mor are signifi	al e levels are d icantly differe	ifferent nt.						
Ŧ	Null H Alterna At the	lypoti ative 0.05	hesis: Hypot level, StiCS	The means hesis: The the popula	of all leve means of (tion means	s are equa ne or mor are signifi	al e levels are d icantly differe	ifferent nt.						
∎ / ₽ /	Null H Alterna At the Fit S Mea	iypoti ative 0.05 Stati	hesis: Hypot level, Stics Com	The means hesis: The the popula parison	of all leve means of (tion means	s are equa ne or mor are signifi	al e levels are d cantly differe	ifferent nt.						
	Null H Alterna At the Fit S Mea	iypoti ative 0.05 Stati ns uke	hesis: Hypot level, istics Com y Te	The means hesis: The the popula parison St	of all leve means of (tion means S	s are equa ne or mor are signifi	al e levels are d icantly differe	ifferent nt.						
	Null H Alterna At the Fit S Mea	ative 0.05 Stati ns	hesis: Hypot level, stics Com y Te	The means hesis: The the popula parison st	of all leve means of of tion means S	s are equa ne or mor are signifi anDiff	al e levels are d cantly differe SEM	ifferent nt. q Val	lue	Prob	Alpha	Sig	LCL	UCL
	Null H Alterna At the Fit S Mea	iypoti ative 0.05 tati ns uke	hesis: Hypot level, istics Comp y Te: 25%	The means hesis: The the popula parison st Referêr	of all level means of of tion means S Me ncia 0	s are equa ne or mor are signifi anDiff 51096	al e levels are d icantly differe <u>SEM</u> 0,32732	ifferent nt. q Val 2,207	lue 766	Prob 0,44909	Alpha 0,1	Sig 0	LCL -0,37645	UCL 1,39837
€ / ₽ / E	Null H Alterna At the Fit S Mea	typoti ative 0.05 tati ns uke	hesis: Hypoti level, Stics Com y Te ,25% ,50%	The means hesis: The the popular parison st Referêr Referêr	of all leve means of (tion means S Meia 0 Incia 0	s are equa ne or mor are signifi anDiff 51096 67569	al e levels are d cantly differe <u>SEM</u> 0,32732 0,40088	ifferent nt. q Val 2,207 2,383	lue 766 368	Prob 0,44909 0,38962	Alpha 0,1 0,1	Sig 0	LCL -0,37645 -1,76255	UCL 1,39837 0,41116
₹ / ₹ / [Null H Alterna At the Fit S Mea	typoti ative 0.05 tati uke	hesis: 1 Hypoti level, istics Comp y Tes ,25% ,50% 0,50%	The means hesis: The the popula parison st Referêr Referêr 5 EU 0,2	of all leve means of (tion means S Incia 0 Incia -0 5% -1	s are equa ne or mor are signifi 51096 67569 18665	al e levels are d ccantly differe SEM 0,32732 0,40088 0,40088	ifferent nt. 2,207 2,383 4,186	lue 766 368 622	Prob 0,44909 0,38962 0,07037	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -0,37645 -1,76255 -2,27351	UCL 1,39837 0,41116 -0,0998
	Null H Alterna At the Fit S Mea	lypoti ative 0.05 Ctati Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati 0.05 Ctati Ctati 0.05 Cta	hesis: Hypoti level, istics Com/ y Te: ,25% ,50% 0,50% 1,0%	The means hesis: The the popula parison st Referêr Referêr Referêr Referêr	of all leve means of (tion means S Ncia 0 1cia -0 5% -1 1cia -1	s are equa ne or mor are signifi 51096 67569 18665 31258	al e levels are d cantly differe 0,32732 0,40088 0,40088 0,40088	rt. q Val 2,207 2,383 4,186 4,630	lue 766 368 622 045	Prob 0,44909 0,38962 0,07037 0,0452	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 1	LCL -0,37645 -1,76255 -2,27351 -2,39943	UCL 1,39837 0,41116 -0,0998 -0,22572
	Null H Alterna At the Fit S Mea E	Alypoti ative 0.05 Stati 0.05 CU 0, CU 0, EU 0 EU 0 EU 0	hesis: Hypoti level, stics Comp y Te: ,25% ,50% 0,50% 1,0%	The means hesis: The the popula parison st Referêr Referêr b EU 0,2 Referêr b EU 0,2	of all lever means of re- tion means S Ncia 0 ncia -0 5% -1 ncia -1 5% -1	s are equa ne or mor are signifi 51096 67569 18665 31258 82354	al e levels are d cantity differe 0,32732 0,40088 0,40088 0,40088 0,40088	q Val 2,207 2,383 4,186 4,630 6,4	lue 766 368 622 045 433	Prob 0,44909 0,38962 0,07037 0,0452 0,00812	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0 1 1 1	LCL -0,37645 -1,76255 -2,27351 -2,39943 -2,91039	UCL 1,39837 0,41116 -0,0998 -0,22572 -0,73669
	Null H Alterna At the Fit S Mea	All	hesis: 1 Hypoti level, stics Comp y Tes ,25% ,50% 0,50% 1,0% 1,0%	The means hesis: The the popula parison st Referêr Referêr b EU 0,2 Referêr b EU 0,2 b EU 0,5	of all leve means of dion means S Cia 0 1012 -0 5% -1 1012 -1 5% -1 0% -0	anDiff 51096 67569 18665 31258 82354 63688	al e levels are d cantly differe 0,32732 0,40088 0,40088 0,40088 0,40088 0,4629	q Val 2,207 2,383 4,186 4,630 6,4 1,945	lue 766 368 622 045 433 576	Prob 0,44909 0,38962 0,07037 0,0452 0,00812 0,54598	Alpha 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0 1 1 1 0	LCL -0,37645 -1,76255 -2,27351 -2,39943 -2,91039 -1,89187	UCL 1,39837 0,41116 -0,0998 -0,22572 -0,73669 0,6181

Tabela 8.36 - Análise de variância do parâmetro tensão de primeira fissura para as pastas contendo fibras de pinho.

		Samp	ole Size	Mean	Standard	Devi	iation	SE o	ofMean				
			4	8,00107		0,3	3404	0	,16702				
Ton	neão.		3	7,07867			0,37	0	,21362				
Ten	1540		2	7,46509		0,0	9473	0	,06698				
			3	5,58064		0,5	5588	0	,32094				
One	e Way	ANC	OVA										
0	Veral	I ANC	VA							-			
		DF	Sum of	Squares	Mean Squ	are	F Va	lue	Prob>F				
N	Nodel	3		10,43412	3,47	804	22,52	2033	2,95823E-4				
	Error	8		1,23552	0,15	444							
	Total	11		11.66964									
	I Utar		The	of all lavala						1			
N	lull Hype	othesis: e Hypot	The means	of all levels a	re equal	ared	lifferent						
N Al At	Iull Hype Iternativ	othesis: e Hypot)5 level,	The means thesis: The the popula	of all levels a means of one tion means ar	re equal or more level significantly	s are d differe	different ent.			1			
	Iull Hype Iternativ It the 0.0	othesis: e Hypot)5 level, tistics	The means thesis: The the popula	of all levels a means of one tion means are	are equal or more level e significantly	are d differe	different ent.		I	1			
N Al A E F I E M	Iull Hype Iternativ It the 0.0 It Sta	othesis: e Hypot 05 level, tistics com	The means thesis: The the popula parison	of all levels a means of one tion means an S	are equal e or more levele e significantly	s are d differe	different ent.		1	L			
	iull Hype Iternativ It the 0.0 it Sta Teans	othesis: e Hypot 5 level, tistics Com ey Te	The means thesis: The the popula parison st	of all levels a means of one tion means an S	re equal or more level a significantly	s are d differe	different ent.						
	Iull Hypo Iternativ It the 0.0 It Sta Ieans Tuko	othesis: e Hypot 55 level, tistics Com ey Te	The means thesis: The the popula parison st	of all levels a means of one tion means an S Mean	e equal e or more levels e significantly Diff SE	s are d differe	different ent. q Val	ue	Prob	Alpha	Sig	LCL	UCL
	Iull Hype Iternativ It the 0.0 It Sta Ieans Tuke	othesis: e Hypot 5 level, tistics Com ey Te 25%	The means thesis: The the popula parison st Referênc	of all levels a means of one tion means an S Mean cia -0,9;	re equal or more level e significantly Diff SE 224 0,300	are d differe M)15	different ent. q Val 4,34	ue 604	Prob 0,05999	Alpha 0,1	Sig 1	LCL -1,73615	UCL -0,108
	Iuli Hype Itemativ Itemativ Iteans Tuke PI 0 PI 0	othesis: e Hypot 5 level, tistics com ey Te 25%	The means thesis: The the popula parison st Referênc Referênc	of all levels a means of one tion means an S Mean cia -0,9: cia -0,53:	Image Image a or more levels a significantly Diff SEI 224 0,300 598 0,340	s are d differe M)15)34	different ent. q Val 4,34 2,22	ue 604 716	Prob 0,05999 0,44226	Alpha 0,1 0,1	Sig 1 0	LCL -1,73615 -1,45869	UCL -0,108 0,386
	Iuli Hype Iternativ It the 0.0 It Sta Ieans Tuke PI 0 PI 0 PI 0	othesis: e Hypot 5 level, 5 level, 5 level, com ey Te 25% 50% 0,50%	The means thesis: The the popula parison st Referênce 6 PI 0,25	of all levels a means of one some and some and some and s	Diff SE 224 0,30(598 0,34(642 0,35(are d differe 015 034 875	different ent. q Val 4,34 2,22 1,52	ue 604 716 329	Prob 0,05999 0,44226 0,71206	Alpha 0,1 0,1 0,1	Sig 1 0	LCL -1,73615 -1,45869 -0,5862	UCL -0,108 0,386 1,359
	Iuli Hypo Iternativ It the 0.0 It Sta Ieans Tuko PI 0 PI 0 PI 0	othesis: e Hypot 5 level, tistics Com ey Te 25% 50% 0,50% 1,0%	The means thesis: The the popula parison st Referênc 6 PI 0,25 Referênc	of all levels a means of one and the means of one and the means and the	Diff SE 224 0,30(598 0,34(642 0,30(M 015 034 015 034 015	different ent. 4,34 2,22 1,52 11,40	ue 604 716 329 431	Prob 0,05999 0,44226 0,71206 1,91173E-4	Alpha 0,1 0,1 0,1 0,1	Sig 1 0 1	LCL -1,73615 -1,45869 -0,5862 -3,23418	UCL -0,108 0,386 1,359 -1,606
	Iuli Hypo Iternativ It the 0.0 It Sta Ieans Tuko PI 0 PI 0 PI 0 PI 0 PI 0	othesis: e Hypot 5 level, tistics com ey Te ,25% ,50% 0,50% 1,0% 1,0% 21,0%	The means thesis: The the popula parison st Referênc 6 PI 0,25 Referênc 6 PI 0,25	Mean cia -0,92 cia -0,93 cia -0,93 cia -0,23 i% 0,38 cia -2,421 i% -1,493	Diff SE 224 0,300 598 0,341 642 0,300 303 0,320	M)15)34)15)375)15	different ent. 4,34 2,22 1,52 11,40 6,6	ue 604 716 329 431 024	Prob 0,05999 0,44226 0,71206 1,91173E-4 0,00697	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 1 0 1 1	LCL -1,73615 -1,45869 -0,5862 -3,23418 -2,36797	UCL -0,108 0,386 1,359 -1,606 -0,628
	Iull Hype Iternativ It the 0.0 It Sta Ieans Tuke PI 0 PI 0 PI 0 PI 0 FI	bthesis: e Hypot 5 level, tistics c Com ey Te ,25% ,50% 1,0% 1,0% Pl 1,0% Pl 1,0%	The means thesis: The parison st Referênc 6 PI 0,25 Referênc 6 PI 0,25 6 PI 0,50	Mean Mean <th< td=""><td>re equal or more level: a significantly Diff SE 224 0,301 598 0,341 642 0,351 043 0,301 803 0,321 445 0,351</td><td>M 015 034 375 015 087 375</td><td>different ent. 4,34 2,22 1,52 11,40 6,6 7,42</td><td>ue 604 716 329 431 024 866</td><td>Prob 0,05999 0,44226 0,71206 1,91173E-4 0,00697 0,00341</td><td>Alpha 0,1 0,1 0,1 0,1 0,1 0,1</td><td>Sig 1 0 1 1 1</td><td>LCL -1,73615 -1,45869 -0,5862 -3,23418 -2,36797 -2,85707</td><td>UCL -0,108 0,386 1,359 -1,606 -0,628 -0,911</td></th<>	re equal or more level: a significantly Diff SE 224 0,301 598 0,341 642 0,351 043 0,301 803 0,321 445 0,351	M 015 034 375 015 087 375	different ent. 4,34 2,22 1,52 11,40 6,6 7,42	ue 604 716 329 431 024 866	Prob 0,05999 0,44226 0,71206 1,91173E-4 0,00697 0,00341	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 1 0 1 1 1	LCL -1,73615 -1,45869 -0,5862 -3,23418 -2,36797 -2,85707	UCL -0,108 0,386 1,359 -1,606 -0,628 -0,911

Tabela 8.37 - Análise de variância do parâmetro deslocamento de primeira fissura para as pastas contendo fibras de eucalipto.

				Sample Siz	e	Mean	Standar	d Deviatio	n SE of I	lean				
					4 (,11506		0,0094	6 0,0	0473				
	0.0	locomo	oto		4 (,11452		0,0112	7 0,0	0563				
	65	locame	110		2 0	,10807		0,0012	9 9,0915	5E-4				
					2 (,10873		0,0095	9 0,0	0678				
0	ne	Way A	NC	VA										
Ð	0	verall A	NO	VA										
[[DF	Sum of Squ	ares	Mean S	Square	F Value	Prob>F	1				
	Μ	odel	3	1,0987	7E-4	3,662	258E-5	0,39448	0,76057	1				
	E	Error	8	7,4276	7E-4	9,284	458E-5			1				
11	1	Total	11	8,5264	4E-4					1				
	Nu	ill Hypothe	sis: '	The means of all	levels	are equal								
	Alt	ernative H	lypot	hesis: The means	s of or	e or more le	vels are dif	ferent						
	At	the 0.05 i	evel,	the population me	eans a	re not signif	icantiy dirre	erent.						
+	Fi	t Statis	tics											
₽.	M	eans C	om	parisons										
	Ξ.	Tukey	Те	st										
					M	eanDiff	SEM	q Val	ue Pro	b	Alpha	Sig	LCL	UCL
		EU 0,2	5%	Referência	-5,3	9618E-4	0,0068	31 0,1	12 0,99	981	0,1	0	-0,01901	0,01793
	Ц	EU 0,5	0%	Referência		-0,00699	0,0083	34 1,18	45 0,83	548	0,1	0	-0,02961	0,01563
14	٦	EU 0,	50%	EU 0,25%		-0,00645	0,0083	34 1,093	04 0,86	453	0,1	0	-0,02907	0,01617
		EU 1	,0%	Referência		-0,00633	0,0083	34 1,072	57 0,87	071	0,1	0	-0,02895	0,0163
		EU 1	1,0%	EU 0,25%		-0,00579	0,0083	34 0,981	12 0,89	667	0,1	0	-0,02841	0,01683
		EU '	1,0%	EU 0,50%	6,6	0445E-4	0,0096	64 0,096	93 0,99	987	0,1	0	-0,02546	0,02678

Tabela 8.38 - Análise de variância do parâmetro deslocamento de primeira fissura para aspastas contendo fibras de pinho.

				Sample Siz	ze I	Mean	Standa	ard Deviatio	n SE of N	lean			
					4 0,	11506		0,0094	6 0,0	0473			
_		10000	anto		3 0,	10585		0,0079	8 0,0	0461			
	Jesi	locali	iento		2 0,	13191		0,0100	9 0,0	0714			
					3 0,	08535		0,0048	1 0,0	0278			
0	ne	Way	ANC	DVA 🛛									
Ę	0	verall	ANO	VA									
			DF	Sum of Squ	ares	Mean	Square	F Value	Prob>F]			
	Μ	odel	3	0,	0029	9,6	6545E-4	14,2029	0,00144	1			
	E	Error	8	5,4380	4E-4	6,79	9756E-5]			
٦	1	Total	11	0,0	0344					1			
	Nu Alt At	ull Hypo ternative the 0.0	thesis: e Hypot 5 level,	The means of al thesis: The mear the population n	l levels a is of one leans ar	are equal e or more e signific	levels are d antly differe	different ent.		1			
•	Nu Alt At Fit	II Hypo ternative the 0.0 t Stat eans Tuke	thesis: Hypot 5 level, tistics Com ev Te	The means of al thesis: The mear the population n parisons st	l levels a s of one leans an	are equal e or more e signific	levels are d antly differe	different ent.		1			
Ŧ	Nu Alt Fil	III Hypo ternative the 0.0 t Stat eans Tuke	thesis: e Hypot 5 level, tistics Com ey Te	The means of al thesis: The mear the population n parisons st	l levels and the soft one soft	are equal e or more e signific	levels are o antly differe SEM	different ent. q Value	Prob	Alpha	Sig	LCL	UCL
•	Nu Alt At	III Hypo ternative the 0.0 t Stat eans Tuke PI 0,	thesis: Hypot S level, tistics Com ey Te 25% I	The means of al thesis: The mean the population n parisons st Referência	levels and the search	are equal e or more e signific Diff 921	levels are of antly differe	different ent. q Value 2,06837	Prob 0,49955	Alpha 0,1	Sig 0	LCL -0,02628	UCL 0,0078
+	Nu Alt At	III Hypo ternative the 0.0 t Stat eans Tuke PI 0, PI 0,	thesis: Hypot level, tistics Com y Te 25% 50%	The means of al thesis: The mean the population n parisons st Referência Referência	Mean -0,00	are equal e or more e signific Diff 921 685 (levels are o antly differe SEM 0,0063 0,00714	different ant. q Value 2,06837 3,3376	Prob 0,49955 0,16312	Alpha 0,1 0,1	Sig 0	LCL -0,02628 -0,00251	UCL 0,0078 0,0362
+		III Hypo ternative the 0.0 t Stat eans Tuke PI 0, PI 0, PI 0,	thesis: Hypot level, tistics Com ey Te 25% 50% 0,50%	The means of al thesis: The mean the population n parisons st Referência Referência 6 PI 0,25%	Mean -0,00 0,01	Diff 921 685 921 685 606	SEM 0,0063 0,00753 0,00753	different ent. 2,06837 3,3376 4,89685	Prob 0,49955 0,16312 0,03473	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -0,02628 -0,00251 0,00566	UCL 0,0078 0,0362 0,0464
÷		III Hypo ternative the 0.0 t Stat eans Tuke PI 0, PI 0, PI 0, PI 1	thesis: e Hypot 5 level, tistics Com ey Te 25% 50% 0,50% 1,0%	The means of al thesis: The mean the population n parisons st Referência Referência 6 PI 0,25% Referência	Mean -0,00 0,02 -0,02	Diff 921 606 (972	levels are o antly differe 0,0063 0,00714 0,00753 0,0063	q Value 2,06837 3,3376 4,89685 6,67372	Prob 0,49955 0,16312 0,03473 0,00655	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 1 1	LCL -0,02628 -0,00251 0,00566 -0,04679	UCL 0,0078 0,0362 0,0464 -0,0126
÷		III Hypo ternative the 0.0 t Stat eans Tuke PI 0, PI 0, PI 0, PI 1 PI 1	thesis: a Hypot 5 level, tistics Com, ay Te 25% 50% 0,50% 1,0% 1,0%	The means of al thesis: The mean the population n parisons st Referência & PI 0,25% Referência & PI 0,25%	Mean -0,00 0,01 -0,02 -0,02 -0,02	Diff 921 606 (972 051	levels are o antly differe 0,0063 0,00714 0,00753 0,0063 0,00673	q Value 2,06837 3,3376 4,89685 6,67372 4,30791	Prob 0,49955 0,16312 0,03473 0,00655 0,06232	Alpha 0,1 0,1 0,1 0,1 0,1 0,1	Sig 0 0 1 1 1	LCL -0,02628 -0,00251 0,00566 -0,04679 -0,03876	UCL 0,0078 0,0362 0,0464 -0,0126 -0,0022

Tabela 8.39 - Análise de variância do parâmetro índice de tenacidade para as pastas estudadas.

			Samp	le Size	Mean	Standard Dev	ation	SE of Me	an				
				2	1,36086	0,0	6151	0,043	49				
1	FT	225	2		1,18349	0,0	6216	0,04395					
		225		2	1,41944	0,19475		0,13771					
L				3	1,64098	0,1	2167	0,070	25				
] (One	e Wa	y ANC)VA									
E		Overa	ANC	VA									
	ΙГ		DF	Sum o	f Squares	Mean Square	F Valu	ue Prol	o>F				
		Mode	I 3		0,26481	0,08827	5,87	04 0,04	297				
		Erro	r 5		0,07518	0,01504							
ľ	Tota		I 0	0,33999									
	N A	Null Hy Alternat	pothesis: ive Hypot	The mean thesis: The	of all levels a means of one	are equal e or more levels are	different						
9		Null Hy Alternat At the 0 Fit Sta Mean	pothesis: ive Hypo 0.05 level, atistics is Com kev Te	The mean thesis: The the popula parisol st	s of all levels : means of one tion means ar	are equal e or more levels are e significantly diffe	different rent.						
-		Null Hy Alternat At the 0 Fit Sta Mean	pothesis: ive Hypo .05 level, atistics is Com key Te	The mean thesis: The the popula parisoi st	s of all levels : means of one tion means ar DS	are equal e or more levels are e significantly diffe	different rent.	e Pro	b	Alpha	Sig	LCL	UCL
		Null Hy Alternat At the 0 Fit Sta Mean	pothesis: ive Hypor .05 level, atistics is Com key Te	The mean thesis: The the popula parison st EU 0,50	a of all levels : means of one tion means ar DS Mean[% -0,177	are equal e or more levels are e significantly diffe	different rent. q Valu 2,0455	e Pro	b 561	Alpha 0,1	Sig	LCL -0,54705	UCL 0,19232
		Null Hy Alternat At the 0 Fit Sta Mean	pothesis: ive Hypo .05 level, atistics s Com key Te J 1,0% 0,50%	The mean thesis: The the popula parisoi st EU 0,50 EU 0,50	s of all levels : means of one tion means ar S MeanE % -0,177 % 0,058	are equal e or more levels are e significantly diffe Diff SEM 36 0,12262 58 0,12262	different rent. q Valur 2,0455 0,6756	e Pro 55 0,52 33 0,96	b 661 082	Alpha 0,1 0,1	Sig 0	LCL -0,54705 -0,3111	UCL 0,19232 0,42827
		Null Hy Alternat At the 0 Fit Sta Mean Tul EL Pl	pothesis: ive Hypol .05 level, atistics s Com key Te J 1,0% 0,50% I 0,50%	The mean thesis: The the popula parison st EU 0,50 EU 0,50 EU 1,0	Mean[% -0,177 % 0,058 % 0,235	are equal or more levels are a significantly diffe Diff SEM 36 0,12262 58 0,12262 59 0,12262	different rent. 2,0455 0,6756 2,7211	e Pro 55 0,52 33 0,96 18 0,32	b 661 082 576	Alpha 0,1 0,1 0,1	Sig 0 0	LCL -0,54705 -0,3111 -0,13374	UCL 0,19232 0,42827 0,60563
-		Null Hy Alternat At the 0 Fit Sta Mean Tul EL PI	pothesis: ive Hypor .05 level, atistics s Com key Te 0,50% 10,50% 10,50%	The mean thesis: The the popula parisoi st EU 0,50 EU 0,50 EU 1,0 EU 0,50	Mean % -0,177 % 0,058 % 0,235 % 0,235 % 0,235 % 0,280	sre equal or more levels are a significantly diffe Diff SEM 36 0,12262 58 0,12262 59 0,12262 12 0,11194	different rent. 2,0455 0,6756 2,7211 3,5389	e Pro 55 0,52 33 0,96 8 0,32 99 0,17	b 661 082 576 393	Alpha 0,1 0,1 0,1 0,1	Sig 0 0 0	LCL -0,54705 -0,3111 -0,13374 -0,05735	UCL 0,19232 0,42827 0,60563 0,6176
		Fit Sta Mean Et the 0 Fit Sta Mean EL PI	pothesis: ive Hypol .05 level, atistics s Com key Te J 1,0% 0,50% I 0,50% I 1,0% PI 1,0%	The mean thesis: The the popula parisol st EU 0,50 EU 0,50 EU 1,0 EU 0,50 EU 1,0	Mean Mean <th< td=""><td>sre equal or more levels are a significantly diffe Diff SEM 36 0,12262 58 0,12262 59 0,12262 12 0,11194 49 0,11194</td><td>different rent. 2,0455 0,6756 2,7211 3,5389 5,7797</td><td>e Pro 5 0,52 3 0,96 8 0,32 9 0,17 7 0,03</td><td>b 661 082 576 393 409</td><td>Alpha 0,1 0,1 0,1 0,1 0,1</td><td>Sig 0 0 0 0 1</td><td>LCL -0,54705 -0,3111 -0,13374 -0,05735 0,12001</td><td>UCL 0,19232 0,42827 0,60563 0,6176 0,79496</td></th<>	sre equal or more levels are a significantly diffe Diff SEM 36 0,12262 58 0,12262 59 0,12262 12 0,11194 49 0,11194	different rent. 2,0455 0,6756 2,7211 3,5389 5,7797	e Pro 5 0,52 3 0,96 8 0,32 9 0,17 7 0,03	b 661 082 576 393 409	Alpha 0,1 0,1 0,1 0,1 0,1	Sig 0 0 0 0 1	LCL -0,54705 -0,3111 -0,13374 -0,05735 0,12001	UCL 0,19232 0,42827 0,60563 0,6176 0,79496